Generation of finite groups by nilpotent subgroups
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 245-255.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study the generation of finite groups by nilpotent subgroups and in particular we investigate the structure of groups which cannot be generated by $n$ nilpotent subgroups and such that every proper quotient can be generated by $n$ nilpotent subgroups. We obtain some results about the structure of these groups and a lower bound for their orders.
Si studia la generazione di gruppi finiti tramite sottogruppi nilpotenti, in particolare viene esaminata la struttura di gruppi finiti non generabili con $n$ sottogruppi nilpotenti e tali che ogni quoziente proprio sia generabile con $n$ sottogruppi nilpotenti. Si ottengono alcuni risultati di struttura per questi gruppi e un limite inferiore per il loro ordine.
@article{BUMI_2003_8_6B_1_a15,
     author = {Damian, E.},
     title = {Generation of finite groups by nilpotent subgroups},
     journal = {Bollettino della Unione matematica italiana},
     pages = {245--255},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {1},
     year = {2003},
     zbl = {1137.20013},
     mrnumber = {665173},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a15/}
}
TY  - JOUR
AU  - Damian, E.
TI  - Generation of finite groups by nilpotent subgroups
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 245
EP  - 255
VL  - 6B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a15/
LA  - en
ID  - BUMI_2003_8_6B_1_a15
ER  - 
%0 Journal Article
%A Damian, E.
%T Generation of finite groups by nilpotent subgroups
%J Bollettino della Unione matematica italiana
%D 2003
%P 245-255
%V 6B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a15/
%G en
%F BUMI_2003_8_6B_1_a15
Damian, E. Generation of finite groups by nilpotent subgroups. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 245-255. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a15/

[1] M. Aschbacher-R. Guralnick, Solvaable generation of groups and Sylow subgroups of the lower central series, J. Algebra, 77, no. 1 (1982), 189-201. | MR | Zbl

[1] M. Aschbacher-R. Guralnick, Some applications of the first cohomology group, J. Algebra, 90, no. 2 (1984), 446-460. | MR | Zbl

[3] John Cossey-Trevor Howkes, On generating a finite group by nilpotent subgroups, J. Pure Appl. Algebra, 97, no. 3 (1994), 275-280. | MR | Zbl

[4] Francesca Dalla Volta-Andrea Lucchini, Generation of almost simple groups, J. Algebra, 178 no. 1 (1995), 194-223. | MR | Zbl

[5] Wolfgang Gaschütz, Zu einem von B. H. und H. Neumann gestellten Problem, Math. Nachr., 14 (1955-1956), 249-252. | MR | Zbl

[6] Robert M. Guralnick, Generation of simple groups, J. Algebra, 103, no. 1 (1986), 381-401. | MR | Zbl

[7] B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin, 1967, Die Grundlehren der Mathematischen Wissenschaften, Band 134. | MR | Zbl

[8] Andrea Lucchini, Generators and minimal normal subgroups, Arch. Math. (Basel), 64, no. 4 (1995), 273-276. | MR | Zbl

[9] Derek J. S. Robinson, A course in the theory of groups, second ed., Springer-Verlag, New York, 1996. | MR | Zbl