Uniform Kadec-Klee property and nearly uniform convexity in Köthe-Bochner sequence spaces
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 221-235.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The uniformly Kadec-Klee property in Köthe-Bochner sequence spaces $E(X)$, where $E$ is a Köthe sequence space and $X$ is an arbitrary separable Banach space, is studied. Namely, the question of whether or not this geometric property lifts from $X$ and $E$ to $E(X)$ is examined. It is settled affirmatively in contrast to the case when $E$ is a Köthe function space. As a corollary we get criteria for $E(X)$ to be nearly uniformly convex.
Viene studiata la proprietà uniforme di Kadec-Klee in spazi sequenziali di Kothe-Bochner $E(X)$, dove $E$ è uno spazio sequenziale di Kothe e $X$ è un arbitrario spazio di Banach separabile. Precisamente, viene esaminato il problema se questa proprietà geometrica si può trasportare da $X$ in $E(X)$. Ciò viene stabilito in contrasto con il caso in cui $E$ è uno spazio di Kothe. Come corollario viene stabilito un criterio affichè $E(X)$ sia «nearly» uniformemente convesso.
@article{BUMI_2003_8_6B_1_a13,
     author = {Kolwicz, Pawe{\l}},
     title = {Uniform {Kadec-Klee} property and nearly uniform convexity in {K\"othe-Bochner} sequence spaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {221--235},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {1},
     year = {2003},
     zbl = {1178.46008},
     mrnumber = {1261096},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a13/}
}
TY  - JOUR
AU  - Kolwicz, Paweł
TI  - Uniform Kadec-Klee property and nearly uniform convexity in Köthe-Bochner sequence spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 221
EP  - 235
VL  - 6B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a13/
LA  - en
ID  - BUMI_2003_8_6B_1_a13
ER  - 
%0 Journal Article
%A Kolwicz, Paweł
%T Uniform Kadec-Klee property and nearly uniform convexity in Köthe-Bochner sequence spaces
%J Bollettino della Unione matematica italiana
%D 2003
%P 221-235
%V 6B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a13/
%G en
%F BUMI_2003_8_6B_1_a13
Kolwicz, Paweł. Uniform Kadec-Klee property and nearly uniform convexity in Köthe-Bochner sequence spaces. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 221-235. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a13/

[1] M. Besbes-S. J. Dilworth-P. N. Dowling-C. J. Lennard, New convexity and fixed point properties in Hardy and Lebesgue-Bochner spaces, J. Functional Analysis, 119 (1993), 340-357. | MR | Zbl

[2] G. Birkhoff, Lattice Theory, Providence, RI 1967. | MR | Zbl

[3] C. Castaing-R. Plcuciennik, The property (H) in Köthe-Bochner spaces, C. R. Acad. Sci. Paris, Serie I, 319 (1994), 1159-1163. | MR | Zbl

[4] J. Cerda-H. Hudzik-M. Mastyło, Geometric properties of Köthe Bochner spaces, Math. Proc. Cambridge Philos Soc., 120 (1996), 521-533. | MR | Zbl

[5] S. Chen-R. Płuciennik, A note on $H$-points in in Köthe-Bochner spaces, Acta Math. Hungar., 94, 1-2 (2002), 59-66. | MR | Zbl

[6] T. Domingues-H. Hudzik-G. López-B. Sims, Complete characterizations of Kadec-Klee properties in Orlicz space, Houston J. Math. to appear. | MR | Zbl

[7] F. Hiai, Representation of additive functionals on vector-valued normed Köthe spaces, Kodai Math. J., 2 (1979), 300-313. | fulltext mini-dml | MR | Zbl

[8] H. Hudzik-A. Kamińska-M. Mastyło, On geometric properties of Orlicz-Lorentz spaces, Canad. Math. Bull. vol., 40 (1997), 316-329. | MR | Zbl

[9] H. Hudzik-A. Kamińska-M. Mastyło, Monotonicity and rotundity properties in Banach lattices, Rocky Mountain J. Math., 30 (2000), 933-949. | fulltext mini-dml | MR | Zbl

[10] H. Hudzik-T. Landes, Characteristic of convexity of Köthe function spaces, Math. Ann., 294 (1992), 117-124. | MR | Zbl

[11] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math., 10 (1980), 743-749. | fulltext mini-dml | MR | Zbl

[12] L. V. Kantorovich-G. P. Akilov, Functional Analysis, Nauka (Moscow, 1977) (in Russian). | MR | Zbl

[13] P. Kolwicz-R. Płuciennik, $P$-convexity of Bochner-Orlicz spaces, Proc. Amer. Math. Soc., 126 8 (1998), 2315-2322. | MR | Zbl

[14] D. Krassowska-R. Płuciennik, A note on property (H) in Köthe-Bochner sequence spaces, Math. Japonica, 46, No. 3 (1997), 407-412. | MR | Zbl

[15] D. Kutzarova-T. Landes, Nearly uniform convexity of infinite direct sums, Indiana Univ. Math. J., 41 (1992), 915-926. | MR | Zbl

[16] P. K. Lin, Köthe Bochner Function Spaces, to appear. | MR | Zbl

[17] J. Lindenstrauss-L. Tzafriri, Classical Banach spaces I, Springer-Verlag (1979). | MR | Zbl

[18] J. Lindenstrauss-L. Tzafriri, Classical Banach spaces II, Springer-Verlag (1979). | MR | Zbl

[19] J. R. Partington, On nearly uniformly convex Banach spaces, Math. Proc. Camb. Phil. Soc., 93 (1983), 127-129. | MR | Zbl

[20] R. Płuciennik, Points of local uniform rotundity in Köthe Bochner spaces, Arch. Math., 70 (1998), 479-485. | MR | Zbl

[21] M. A. Smith-B. Turett, Rotundity in Lebesgue-Bochner function spaces, Trans. Amer. Math. Soc., 257 (1980), 105-118. | MR | Zbl

[22] P. Sukochev, On the uniform Kadec-Klee property with respect to convergence in measure, J. Austral. Math. Soc., 59 (1995), 343-352. | MR | Zbl