$\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 199-209
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
For a knot $K$ with a strong inversion $i$ induced by an unknotting tunnel, we have a double covering projection $\Pi \colon S^{3}\rightarrow S^{3}/i$ branched over a trivial knot $\Pi(\text{fix}(i))$, where $\text{fix}(i)$ is the axis of $i$. Then a set $\Pi(\text{fix}(i)\cup K)$ is called a $\theta$-curve. We construct $\theta$-curves and the $\mathbb{Z}_{2}\oplus \mathbb{Z}_{2}$ cyclic branched coverings over $\theta$-curves, having two non-isotopic Heegaard decompositions which are one stable equivalent.
@article{BUMI_2003_8_6B_1_a11,
author = {Kim, Soo Hwan and Kim, Yangkok},
title = {$\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces},
journal = {Bollettino della Unione matematica italiana},
pages = {199--209},
year = {2003},
volume = {Ser. 8, 6B},
number = {1},
zbl = {1150.57002},
mrnumber = {MR1955705},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a11/}
}
TY - JOUR AU - Kim, Soo Hwan AU - Kim, Yangkok TI - $\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces JO - Bollettino della Unione matematica italiana PY - 2003 SP - 199 EP - 209 VL - 6B IS - 1 UR - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a11/ LA - en ID - BUMI_2003_8_6B_1_a11 ER -
%0 Journal Article %A Kim, Soo Hwan %A Kim, Yangkok %T $\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces %J Bollettino della Unione matematica italiana %D 2003 %P 199-209 %V 6B %N 1 %U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a11/ %G en %F BUMI_2003_8_6B_1_a11
Kim, Soo Hwan; Kim, Yangkok. $\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 199-209. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a11/