$\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 199-209

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

For a knot $K$ with a strong inversion $i$ induced by an unknotting tunnel, we have a double covering projection $\Pi \colon S^{3}\rightarrow S^{3}/i$ branched over a trivial knot $\Pi(\text{fix}(i))$, where $\text{fix}(i)$ is the axis of $i$. Then a set $\Pi(\text{fix}(i)\cup K)$ is called a $\theta$-curve. We construct $\theta$-curves and the $\mathbb{Z}_{2}\oplus \mathbb{Z}_{2}$ cyclic branched coverings over $\theta$-curves, having two non-isotopic Heegaard decompositions which are one stable equivalent.
@article{BUMI_2003_8_6B_1_a11,
     author = {Kim, Soo Hwan and Kim, Yangkok},
     title = {$\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {199--209},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {1},
     year = {2003},
     zbl = {1150.57002},
     mrnumber = {MR1955705},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a11/}
}
TY  - JOUR
AU  - Kim, Soo Hwan
AU  - Kim, Yangkok
TI  - $\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 199
EP  - 209
VL  - 6B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a11/
LA  - en
ID  - BUMI_2003_8_6B_1_a11
ER  - 
%0 Journal Article
%A Kim, Soo Hwan
%A Kim, Yangkok
%T $\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces
%J Bollettino della Unione matematica italiana
%D 2003
%P 199-209
%V 6B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a11/
%G en
%F BUMI_2003_8_6B_1_a11
Kim, Soo Hwan; Kim, Yangkok. $\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 199-209. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a11/