$L^{2,\lambda}$-regularity for minima of variational integrals
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 39-48

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The $L^{2,\lambda}$-regularity of the gradient of local minima for nonlinear functionals is shown.
@article{BUMI_2003_8_6B_1_a1,
     author = {Dan\v{e}\v{c}ek, Josef and Viszus, Eugen},
     title = {$L^{2,\lambda}$-regularity for minima of variational integrals},
     journal = {Bollettino della Unione matematica italiana},
     pages = {39--48},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {1},
     year = {2003},
     zbl = {1139.49001},
     mrnumber = {MR1955695},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a1/}
}
TY  - JOUR
AU  - Daněček, Josef
AU  - Viszus, Eugen
TI  - $L^{2,\lambda}$-regularity for minima of variational integrals
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 39
EP  - 48
VL  - 6B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a1/
LA  - en
ID  - BUMI_2003_8_6B_1_a1
ER  - 
%0 Journal Article
%A Daněček, Josef
%A Viszus, Eugen
%T $L^{2,\lambda}$-regularity for minima of variational integrals
%J Bollettino della Unione matematica italiana
%D 2003
%P 39-48
%V 6B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a1/
%G en
%F BUMI_2003_8_6B_1_a1
Daněček, Josef; Viszus, Eugen. $L^{2,\lambda}$-regularity for minima of variational integrals. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 39-48. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a1/