Existence and decay in non linear viscoelasticity
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 1-37

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this work we study the existence, uniqueness and decay of solutions to a class of viscoelastic equations in a separable Hilbert space $H$ given by \begin{gather*} u_{tt} + M([u]) Au - \int_{0}^{t} g(t-\tau) N([u]) Au \, d\tau = 0, \quad \text{ in } L^{2}(0, T; H) \\ u(0)=u_{0}, \quad u_{t}(0)=u_{1} \end{gather*} where by $[u(t)]$ we are denoting \begin{equation*} [u(t)]= \left( ( u(t), u_{t}(t), (Au(t), u_{t}(t)), \|A^{\frac{1}{2}} u(t) \|^{2}, \|A^{\frac{1}{2}} u_{t}(t) \|^{2}, \|A u(t) \|^{2} \right) \in \mathbb{R}^{5} \end{equation*} $A \colon D(A) \subset H \to H$ is a nonnegative, self-adjoint operator, $M$, $N \colon \mathbb{R}^{5} \to \mathbb{R}$ are $C^{2}$- functions and $g \colon \mathbb{R} \to \mathbb{R}$ is a $C^{3}$-function with appropriates conditions. We show that there exists global solution in time for small initial data. When $[u(t)]= \| A^{\frac{1}{2}} u\|^{2}$ and $N=1$, we show the global existence for large initial data $(u_{0}, u_{1})$ taken in the space $D(A) \times D(A^{1/2})$ provided they are close enough to Gevrey data. Uniform rate of decay is also proved.
@article{BUMI_2003_8_6B_1_a0,
     author = {Mu\~noz Rivera, Jaime E. and Quispe G\'omez, F\'elix P.},
     title = {Existence and decay in non linear viscoelasticity},
     journal = {Bollettino della Unione matematica italiana},
     pages = {1--37},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {1},
     year = {2003},
     zbl = {1177.74082},
     mrnumber = {MR1955694},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a0/}
}
TY  - JOUR
AU  - Muñoz Rivera, Jaime E.
AU  - Quispe Gómez, Félix P.
TI  - Existence and decay in non linear viscoelasticity
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 1
EP  - 37
VL  - 6B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a0/
LA  - en
ID  - BUMI_2003_8_6B_1_a0
ER  - 
%0 Journal Article
%A Muñoz Rivera, Jaime E.
%A Quispe Gómez, Félix P.
%T Existence and decay in non linear viscoelasticity
%J Bollettino della Unione matematica italiana
%D 2003
%P 1-37
%V 6B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a0/
%G en
%F BUMI_2003_8_6B_1_a0
Muñoz Rivera, Jaime E.; Quispe Gómez, Félix P. Existence and decay in non linear viscoelasticity. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 1-37. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a0/