Leggi di conservazione
Bollettino della Unione matematica italiana, Série 8, 6A (2003) no. 3, pp. 415-439.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{BUMI_2003_8_6A_3_a3,
     author = {Bressan, Alberto},
     title = {Leggi di conservazione},
     journal = {Bollettino della Unione matematica italiana},
     pages = {415--439},
     publisher = {mathdoc},
     volume = {Ser. 8, 6A},
     number = {3},
     year = {2003},
     zbl = {1194.35254},
     mrnumber = {1816648},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6A_3_a3/}
}
TY  - JOUR
AU  - Bressan, Alberto
TI  - Leggi di conservazione
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 415
EP  - 439
VL  - 6A
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6A_3_a3/
LA  - it
ID  - BUMI_2003_8_6A_3_a3
ER  - 
%0 Journal Article
%A Bressan, Alberto
%T Leggi di conservazione
%J Bollettino della Unione matematica italiana
%D 2003
%P 415-439
%V 6A
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6A_3_a3/
%G it
%F BUMI_2003_8_6A_3_a3
Bressan, Alberto. Leggi di conservazione. Bollettino della Unione matematica italiana, Série 8, 6A (2003) no. 3, pp. 415-439. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6A_3_a3/

[1] S. Bianchini - A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Annals of Mathematics, in corso di stampa. | fulltext mini-dml | Zbl

[2] A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem, Oxford University Press, 2000. | MR | Zbl

[3] A. Bressan, Hyperbolic systems of conservation laws in one space dimension, Proceedings of the International Congress of Mathematicians, Beijing 2002, Vol. I. Higher Education Press (2002), 159-178. | fulltext mini-dml | MR | Zbl

[4] L. Euler, Principes généraux des mouvement des fluides, Mém. Acad. Sci. Berlin, 11(1755), 274-315.

[5] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 18(1965), 697-715. | MR | Zbl

[6] S. Kruzhkov, First order quasilinear equations with several space variables, Math. USSR Sbornik, 10(1970), 217-243. | Zbl

[7] P. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10(1957), 537-566. | MR | Zbl

[8] P. Lax, Problems solved and unsolved concerning nonlinear P.D.E., Procedings of the International Congress of Mathematicians, Warszawa 1983, Elsevier Science Pub. (1984), 119-138. | MR | Zbl

[9] J. Von Neumann, Theory of shock waves, Collected Works, Vol. VI, pp. 178-202. Oxford: Pergamon Press, 1963.

[10] O. Oleinik, Discontinuous solutions of nonlinear differential equations, Amer. Math. Soc. Transl., 26(1963), 95-172. | MR | Zbl

[11] B. Riemann, Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Göttingen Abh. Math. Cl., 8(1860), 43-65. | fulltext EuDML | Jbk 19.1067.01

[12] D. Serre, Systems of conservation laws: A challenge for the XXI century, in Mathematics Unlimited - 2001 and beyond, B. Engquist and W. Schmid ed., Springer-Verlag, 2001. | MR | Zbl

[13] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983. | MR | Zbl

[14] A. I. Volpert, The spaces BV and quasilinear equations, Math. USSR Sbornik, 2(1967), 225-267. | MR | Zbl