I teoremi di assolutezza in teoria degli insiemi: prima parte
Bollettino della Unione matematica italiana, Série 8, 6A (2003) no. 1, pp. 57-84.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Questa è la prima parte di una articolo espositivo dedicato ai teoremi di assolutezza, un argomento che sta assumendo un’importanza via via più grande in teoria degli insiemi. In questa prima parte vedremo come le questioni di teoria dei numeri non siano influenzate da assunzioni insiemistiche quali l’assioma di scelta o l’ipotesi del continuo.
@article{BUMI_2003_8_6A_1_a3,
     author = {Andretta, Alessandro},
     title = {I teoremi di assolutezza in teoria degli insiemi: prima parte},
     journal = {Bollettino della Unione matematica italiana},
     pages = {57--84},
     publisher = {mathdoc},
     volume = {Ser. 8, 6A},
     number = {1},
     year = {2003},
     zbl = {1194.03040},
     mrnumber = {776640},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6A_1_a3/}
}
TY  - JOUR
AU  - Andretta, Alessandro
TI  - I teoremi di assolutezza in teoria degli insiemi: prima parte
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 57
EP  - 84
VL  - 6A
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6A_1_a3/
LA  - it
ID  - BUMI_2003_8_6A_1_a3
ER  - 
%0 Journal Article
%A Andretta, Alessandro
%T I teoremi di assolutezza in teoria degli insiemi: prima parte
%J Bollettino della Unione matematica italiana
%D 2003
%P 57-84
%V 6A
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6A_1_a3/
%G it
%F BUMI_2003_8_6A_1_a3
Andretta, Alessandro. I teoremi di assolutezza in teoria degli insiemi: prima parte. Bollettino della Unione matematica italiana, Série 8, 6A (2003) no. 1, pp. 57-84. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6A_1_a3/

[Ba] J. Baumgartner, Applications of the proper forcing axiom, in Handbook of Set Theoretic Topology, a cura di K. Kunen and Jerry E. Vaughan, North-Holland, Amsterdam (1984), vii+1273. | MR | Zbl

[BHR] J. Becker - C. W. Henson - L. Rubel, First order conformal invariants, Annals of Mathematics, 112(1980), 123-178. | DOI | MR | Zbl

[Bl] A. Blass, Near coherence of filters. II. Applications to operator ideals, the Stone-Čech remainder of a half-line, order ideals of sequences, and slenderness of groups, Transactions of the American Mathematical Society, 300(1987), 557-581. | DOI | MR | Zbl

[BlW] A. Blass - G. Weiss, A characterization and sum decomposition for operator ideals, Transactions of the American Mathematical Society, 246 (1978), 407-417. | DOI | MR | Zbl

[BPS] A. Brown - C. Pearcy - N. Salinas, Ideals of compact operators on Hilbert space, Michigan Mathematical Journal, 18(1971), 373-384. | fulltext mini-dml | MR | Zbl

[DW] H. Dales - W. H. Woodin, An Introduction to Independence for Analysts, Cambridge University Press, Cambridge (1987), xiv+241. | DOI | MR | Zbl

[DM] C. Dellacherie - P.-A. Meyer, Probabilities and Potential, North-Holland, Amsterdam (1978), viii+189. | MR | Zbl

[EM] P. Eklof- A. Mekler, Almost Free Modules. Set-theoretic Methods, North-Holland, Amsterdam (1990), xvi+481. | MR | Zbl

[Fo] G. Folland, Real Analysis. Modern Techniques and their Applications, John Wiley and Sons, Inc., New York (1999), xvi+386. | MR | Zbl

[G] M. Goldstern, An application of Shoenfield’s absoluteness theorem to the theory of uniform distribution, Monatshefte für Mathematik, 116 (1993), 237-243. | fulltext EuDML | DOI | MR | Zbl

[J] T. Jech, Set Theory, Academic Press, New York-London (1978), xi+621. | MR | Zbl

[Ka] A. Kanamori, The Higher Infinite, Springer-Verlag, Berlin (1994), xxiv+536. | MR | Zbl

[Ke] A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York (1995), xviii+402. | DOI | MR | Zbl

[Ku] K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland Publishing Co., Amsterdam (1983), xvi+313. | MR | Zbl

[LR] L. Lempert- L. Rubel, An independence result in several complex variables, Proceedings of the American Mathematical Society, 113(1991), 1055-1065. | DOI | MR | Zbl

[M] G. Moore, Zermelo’s Axiom of Choice. Its Origins, Development and Influence, Springer-Verlag, New York (1982), xiv+410. | DOI | MR | Zbl

[S] S. Shelah, Lifting problem of the measure algebra, Israel Journal of Mathematics, 45(1983), 90-96. | DOI | MR | Zbl

[T] S. Todorĉević, Compact subsets of the first Baire class, The Journal of the American Mathematical Society, 12(1999), 1179-1212. | DOI | MR | Zbl

[Wa] S. Wagon, The Banach-Tarski Paradox, Cambridge University Press, Cambridge (1985), xvi+251. | DOI | MR | Zbl