Hausdorff Fréchet closure spaces with maximum topological defect
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 641-665.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

It is well-known that the topological defect of every Fréchet closure space is less than or equal to the first uncountable ordinal number $\omega_{1}$. In the case of Hausdorff Fréchet closure spaces we obtain some general conditions sufficient so that the topological defect is exactly $\omega_{1}$. Some classical and recent results are deduced from our criterion.
È noto che il difetto topologico di ogni spazio di chiusura di Fréchet é minore o uguale al primo ordinale non numerabile $\omega_{1}$. Nel caso di spazi di chiusura di Hausdorff Fréchet si ottengono alcune condizioni generali sufficienti affinché il difetto topologico sia pari a $\omega_{1}$. Alcuni risultati classici e recenti sono dedotti dal nostro criterio.
@article{BUMI_2002_8_5B_3_a4,
     author = {Ghiloni, Riccardo},
     title = {Hausdorff {Fr\'echet} closure spaces with maximum topological defect},
     journal = {Bollettino della Unione matematica italiana},
     pages = {641--665},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {3},
     year = {2002},
     zbl = {1098.54510},
     mrnumber = {240767},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a4/}
}
TY  - JOUR
AU  - Ghiloni, Riccardo
TI  - Hausdorff Fréchet closure spaces with maximum topological defect
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 641
EP  - 665
VL  - 5B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a4/
LA  - en
ID  - BUMI_2002_8_5B_3_a4
ER  - 
%0 Journal Article
%A Ghiloni, Riccardo
%T Hausdorff Fréchet closure spaces with maximum topological defect
%J Bollettino della Unione matematica italiana
%D 2002
%P 641-665
%V 5B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a4/
%G en
%F BUMI_2002_8_5B_3_a4
Ghiloni, Riccardo. Hausdorff Fréchet closure spaces with maximum topological defect. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 641-665. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a4/

[AF] A. V. Arhangel'Skiĭ-S. P. Franklin, Ordinal invariants for topological spaces, Mich. Math. J., 15 (1968), 313-320. | fulltext mini-dml | MR | Zbl

[Če] E. Čech, Topological Spaces, Wiley, London 1966. | Zbl

[DG1] S. Dolecki-G. H. Greco, Topologically maximal pretopologies, Stud. Math., 77 (1984), 265-281. | fulltext mini-dml | MR | Zbl

[DG2] S. Dolecki-G. H. Greco, Cyrtologies of Convergences, II: Sequential Convergences, Math. Nachr., 127 (1986), 317-334. | MR | Zbl

[Do] M. Dolcher, Topologie e strutture di convergenza, Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat., III Ser., 14 (1960), 63-92. | fulltext mini-dml | MR | Zbl

[Fč] R. Frič, On plane topologies with high sequential order, Commentat. Math. Univ. Carol., 31, 1 (1990), 33-36. | fulltext mini-dml | MR | Zbl

[Fr1] S. P. Franklin, Spaces in which sequences suffice, Fundam. Math., 57 (1965), 107-115. | fulltext mini-dml | MR | Zbl

[Fr2] S. P. Franklin, Spaces in which sequences suffice II, Fundam. Math., 61 (1967), 51-56. | fulltext mini-dml | MR | Zbl

[Fré] M. Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo, 22 (1906), 1-74. | Jbk 37.0348.02

[Gr] G. H. Greco, The sequential defect of the cross topology is $\omega_1$, Topology Appl., 19 (1985), 91-94. | MR | Zbl

[Ha] F. Hausdorff, Gestufte Raüme, Fundam. Math., 25 (1935), 486-502. | fulltext mini-dml | Zbl

[Ku] K. Kuratowski, Une méthode d'élimination des nombres transfinis des raisonnements mathématiques, Fundam. Math., 3 (1922), 76-108. | fulltext mini-dml | Jbk 48.0205.04

[No1] J. Novák, On some problems concerning multivalued convergences, Czech. Math. J., 14 (89) (1964), 548-561. | fulltext mini-dml | MR | Zbl

[No2] J. Novák, On convergence spaces and their sequential envelopes, Czech. Math. J., 15 (90) (1965), 74-100. | fulltext mini-dml | MR | Zbl