Hausdorff Fréchet closure spaces with maximum topological defect
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 641-665

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

It is well-known that the topological defect of every Fréchet closure space is less than or equal to the first uncountable ordinal number $\omega_{1}$. In the case of Hausdorff Fréchet closure spaces we obtain some general conditions sufficient so that the topological defect is exactly $\omega_{1}$. Some classical and recent results are deduced from our criterion.
@article{BUMI_2002_8_5B_3_a4,
     author = {Ghiloni, Riccardo},
     title = {Hausdorff {Fr\'echet} closure spaces with maximum topological defect},
     journal = {Bollettino della Unione matematica italiana},
     pages = {641--665},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {3},
     year = {2002},
     zbl = {1098.54510},
     mrnumber = {MR1934372},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a4/}
}
TY  - JOUR
AU  - Ghiloni, Riccardo
TI  - Hausdorff Fréchet closure spaces with maximum topological defect
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 641
EP  - 665
VL  - 5B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a4/
LA  - en
ID  - BUMI_2002_8_5B_3_a4
ER  - 
%0 Journal Article
%A Ghiloni, Riccardo
%T Hausdorff Fréchet closure spaces with maximum topological defect
%J Bollettino della Unione matematica italiana
%D 2002
%P 641-665
%V 5B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a4/
%G en
%F BUMI_2002_8_5B_3_a4
Ghiloni, Riccardo. Hausdorff Fréchet closure spaces with maximum topological defect. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 641-665. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a4/