Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2002_8_5B_3_a2, author = {Mu\~noz Rivera, Jaime E. and Bisognin, Vanilde and Bisognin, Eleni}, title = {Exponential decay to partially thermoelastic materials}, journal = {Bollettino della Unione matematica italiana}, pages = {605--629}, publisher = {mathdoc}, volume = {Ser. 8, 5B}, number = {3}, year = {2002}, zbl = {1177.74178}, mrnumber = {233539}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a2/} }
TY - JOUR AU - Muñoz Rivera, Jaime E. AU - Bisognin, Vanilde AU - Bisognin, Eleni TI - Exponential decay to partially thermoelastic materials JO - Bollettino della Unione matematica italiana PY - 2002 SP - 605 EP - 629 VL - 5B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a2/ LA - en ID - BUMI_2002_8_5B_3_a2 ER -
%0 Journal Article %A Muñoz Rivera, Jaime E. %A Bisognin, Vanilde %A Bisognin, Eleni %T Exponential decay to partially thermoelastic materials %J Bollettino della Unione matematica italiana %D 2002 %P 605-629 %V 5B %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a2/ %G en %F BUMI_2002_8_5B_3_a2
Muñoz Rivera, Jaime E.; Bisognin, Vanilde; Bisognin, Eleni. Exponential decay to partially thermoelastic materials. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 605-629. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a2/
[1] On the existence and the asymptotic stability of solution to the equation of linear thermoelasticity, Arch. Rat. Mech Anal., 29 (1968), 241-271. | MR | Zbl
,[2] The effect of the boundary damping for the quasilinear wave equation, Journal of Differential Equations, 52 (1) (1984), 66-75. | MR | Zbl
- ,[3] On formation of singularities in one dimensional nonlinear thermoelasticity, Arch. Rational Mech. Anal., 111 (1990), 135-151. | MR | Zbl
- ,[4] On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899. | MR | Zbl
,[5] Rapid boundary stabilization of the wave equation, SIAM J. Control and Optimization, 29 (1991), 197-208. | MR | Zbl
,[6] A direct method for the boundary stabilization of the wave equation, J. Math. pures et appl., 69 (1990), 33-54. | MR | Zbl
- ,[7] Global uniform decay rates for the solution to the wave equation with nonlinear boundary conditions, Applicable Analysis 47 (1992), 191-212. | MR | Zbl
,[8] Energy decay rates in linear thermoelasticity, Funkcialaj Ekvacioj, 35 (1992), 19-30. | fulltext mini-dml | MR | Zbl
,[9] Stability in inhomogeneous and anisotropic thermoelasticity, Bollettino della Unione Matematica Italiana, (7) 11-A (1997), 115-127. | MR | Zbl
- ,[10] Decay of solutions of the wave equation with a local degenerate dissipation, Israel J. Math., 95 (1996), 25-42. | MR | Zbl
,[11] Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann., 305, No. 3 (1996), 403-417. | MR | Zbl
,[12] A stretched string equation with a boundary dissipation, Kyushu J. of Math., 28, No. 2 (1994), 265-281. | MR | Zbl
,[13] On the time asymptotic behaviour of solutions in thermoelasticity, Proceeding of the Royal Society of Edinburgh, 107A (1987), 289-298. | MR | Zbl
,[14] Global smooth solution and asymptotic stability in one dimensional nonlinear thermoelasticity, Arch. Rat. Mech. Anal., 116 (1991), 1-34. | MR | Zbl
- ,[15] Global solvability and exponential stability in one dimensional nonlinear thermoelasticity, Quarterly Appl. Math., 51, No. 4 (1993), 751-763. | MR | Zbl
- - ,[16] Global smooth solution to the system of one dimensional Thermoelasticity with dissipation boundary condition, Chin. Ann. of Math., 7B (3) (1986), 303-317. | Zbl
- ,[17] Global existence, uniqueness and asymptotic stability of classical smooth solution in one dimensional non linear thermoelasticity, Arch. Rat Mech. Ana., 76 (1981), 97-133. | MR | Zbl
,[18] Infinite Dimensional Dynamical systems in Mechanics and Physics, Springer-Verlag New York Inc. (1988). | Zbl
,[19] Global solution and application to a class of quasi linear hyperbolic-parabolic coupled system, Sci. Sínica, Ser. A, 27 (1984), 1274-1286. | MR | Zbl
,[20] Uniform stabilization of the wave equation by nonlinear wave equation boundary feedback, SIAM J. control and optimization, 28 (1990), 466-477. | MR | Zbl
,[21] Exponential decay for the semilinear wave equation with locally distribuited damping, Comm. P.D.E., 15 (1990), 205-235. | MR | Zbl
,