Note on the Wijsman hyperspaces of completely metrizable spaces
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 827-832
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We consider the hyperspace $CL(X)$ of nonempty closed subsets of completely metrizable space $X$ endowed with the Wijsman topologies $\tau_{W_{d}}$. If $X$ is separable and $d$, $e$ are two metrics generating the topology of $X$, every countable set closed in $(CL(X), \tau_{W_{e}})$ has isolated points in $(CL(X), \tau_{W_{d}})$. For $d=e$ , this implies a theorem of Costantini on topological completeness of $(CL(X), \tau_{W_{d}})$. We show that for nonseparable $X$ the hyperspace $(CL(X), \tau_{W_{d}})$ may contain a closed copy of the rationals. This answers a question of Zsilinszky.
@article{BUMI_2002_8_5B_3_a15,
author = {Chaber, J. and Pol, R.},
title = {Note on the {Wijsman} hyperspaces of completely metrizable spaces},
journal = {Bollettino della Unione matematica italiana},
pages = {827--832},
year = {2002},
volume = {Ser. 8, 5B},
number = {3},
zbl = {1098.54006},
mrnumber = {MR1934383},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a15/}
}
Chaber, J.; Pol, R. Note on the Wijsman hyperspaces of completely metrizable spaces. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 827-832. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a15/