Note on the Wijsman hyperspaces of completely metrizable spaces
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 827-832.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider the hyperspace $CL(X)$ of nonempty closed subsets of completely metrizable space $X$ endowed with the Wijsman topologies $\tau_{W_{d}}$. If $X$ is separable and $d$, $e$ are two metrics generating the topology of $X$, every countable set closed in $(CL(X), \tau_{W_{e}})$ has isolated points in $(CL(X), \tau_{W_{d}})$. For $d=e$ , this implies a theorem of Costantini on topological completeness of $(CL(X), \tau_{W_{d}})$. We show that for nonseparable $X$ the hyperspace $(CL(X), \tau_{W_{d}})$ may contain a closed copy of the rationals. This answers a question of Zsilinszky.
Consideriamo sugli spazi $CL(X)$ dei sottoinsiemi chiusi e non vuoti di uno spazio $X$ completamente metrizzabile la topologia di Wijsman $\tau_{W_{d}}$. Se $X$ è separabile, mostriamo che, per ogni metrica $d$, $e$ su $X$, ogni insieme chiuso e numerabile in $(CL(X), \tau_{W_{e}})$ ha punti isolati in $(CL(X), \tau_{W_{d}})$. Se $d=e$ , questo implica il teorema di Costantini sulla completezza topologica di $(CL(X), \tau_{W_{d}})$. Per $X$ non-separabili, rispondiamo ad una questione sollevata da Zsilinszky, mostrando che in molti casi gli spazi $(CL(X), \tau_{W_{d}})$ contengono copie chiuse dei razionali.
@article{BUMI_2002_8_5B_3_a15,
     author = {Chaber, J. and Pol, R.},
     title = {Note on the {Wijsman} hyperspaces of completely metrizable spaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {827--832},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {3},
     year = {2002},
     zbl = {1098.54006},
     mrnumber = {1269778},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a15/}
}
TY  - JOUR
AU  - Chaber, J.
AU  - Pol, R.
TI  - Note on the Wijsman hyperspaces of completely metrizable spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 827
EP  - 832
VL  - 5B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a15/
LA  - en
ID  - BUMI_2002_8_5B_3_a15
ER  - 
%0 Journal Article
%A Chaber, J.
%A Pol, R.
%T Note on the Wijsman hyperspaces of completely metrizable spaces
%J Bollettino della Unione matematica italiana
%D 2002
%P 827-832
%V 5B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a15/
%G en
%F BUMI_2002_8_5B_3_a15
Chaber, J.; Pol, R. Note on the Wijsman hyperspaces of completely metrizable spaces. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 827-832. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a15/

[1] G. Beer, Topologies on closed and closed convex sets, Kluwer Academic Publishers, Dordrecht, 1993. | MR | Zbl

[2] C. Costantini, Every Wijsman topology relative to a Polish space is Polish, Proc. Amer. Math. Soc., 123 (1995), 2569-2574. | MR | Zbl

[3] C. Costantini, On the hyperspace of a non-separable metric space, Proc. Amer. Math. Soc., 126 (1998), 3393-3396. | MR | Zbl

[4] E. Van Douwen, The integers in topology, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.) North Holland, Amsterdam 1984, 116-167. | MR | Zbl

[5] R. Engelking- Mrówka, On $E$-compact spaces, Bull. Acad. Pol. Sci., 6 (1958), pp. 429-439. | MR | Zbl

[6] A. S. Kechris, Classical Descriptive Set Theory, Springer Verlag, New York, 1994. | MR | Zbl

[7] L. Zsilinszky, Polishness of the Wijsman topology revisited, Proc. Amer. Math. Soc., 126 (1998), pp. 3763-3765. | MR | Zbl