A characterization of the essential spectrum and applications
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 805-825
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
In this article the essential spectrum of closed, densely defined linear operators is characterized on a large class of spaces, which possess the Dunford-Pettis property or which isomorphic to one of the spaces $L_{p}(\Omega)$$p>1$. A practical criterion guaranteeing its stability, for perturbed operators, is given. Further we apply the obtained results to investigate the essential spectrum of one-dimensional transport equation with general boundary conditions. Finally, sufficient conditions in terms of boundary and collision operators assuring the invariance of the essential spectrum of the streaming operator are discussed.
@article{BUMI_2002_8_5B_3_a14,
author = {Jeribi, Aref},
title = {A characterization of the essential spectrum and applications},
journal = {Bollettino della Unione matematica italiana},
pages = {805--825},
year = {2002},
volume = {Ser. 8, 5B},
number = {3},
zbl = {1099.47501},
mrnumber = {MR1934382},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a14/}
}
Jeribi, Aref. A characterization of the essential spectrum and applications. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 805-825. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a14/