Hysteresis filtering in the space of bounded measurable functions
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 755-772.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We define a mapping which with each function $u\in L^{\infty}(0, T)$ and an admissible value of $r > 0$ associates the function $\xi$ with a prescribed initial condition $\xi^{0}$ which minimizes the total variation in the $r$-neighborhood of $u$ in each subinterval $[0, t]$ of $[0, T]$. We show that this mapping is non-expansive with respect to $u$, $r$ and $\xi^{0}$, and coincides with the so-called play operator if $u$ is a regulated function.
Si definisce una mappa che associa ad ogni funzione $u\in L^{\infty}(0, T)$ e valore ammissibile $r > 0$ la funzione $\xi$ con condizione iniziale $\xi^{0}$ che minimizza la variazione totale nell'$r$-intorno di $u$ su ogni sottointervallo $[0,t]$ di $[0, T]$. Si mostra che questa mappa è non-espansiva rispetto a $u$, $r$ e $\xi^{0} $, e che coincide con il cosiddetto operatore play se $u$ è una funzione regolata.
@article{BUMI_2002_8_5B_3_a11,
     author = {Krej\v{c}{\'\i}, Pavel and Lauren\c{c}ot, Philippe},
     title = {Hysteresis filtering in the space of bounded measurable functions},
     journal = {Bollettino della Unione matematica italiana},
     pages = {755--772},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {3},
     year = {2002},
     zbl = {1177.35125},
     mrnumber = {61652},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a11/}
}
TY  - JOUR
AU  - Krejčí, Pavel
AU  - Laurençot, Philippe
TI  - Hysteresis filtering in the space of bounded measurable functions
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 755
EP  - 772
VL  - 5B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a11/
LA  - en
ID  - BUMI_2002_8_5B_3_a11
ER  - 
%0 Journal Article
%A Krejčí, Pavel
%A Laurençot, Philippe
%T Hysteresis filtering in the space of bounded measurable functions
%J Bollettino della Unione matematica italiana
%D 2002
%P 755-772
%V 5B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a11/
%G en
%F BUMI_2002_8_5B_3_a11
Krejčí, Pavel; Laurençot, Philippe. Hysteresis filtering in the space of bounded measurable functions. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 755-772. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a11/

[1] G. Aumann, Reelle Funktionen (German), Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954. | MR | Zbl

[2] M. Brokate-J. Sprekels, Hysteresis and phase transitions, Appl. Math. Sci., 121, Springer-Verlag, New York, 1996. | MR | Zbl

[3] M. Brokate-K. Dreßler-P. Krejčí, Rainflow counting and energy dissipation for hysteresis models in elastoplasticity, Euro. J. Mech. A/Solids, 15 (1996), 705-735. | MR | Zbl

[4] D. Fraňková, Regulated functions, Math. Bohem., 119 (1991), 20-59. | MR | Zbl

[5] A. N. Kolmogorov-S. V. Fomin, Introductory real analysis, Prentice Hall, Inc., Englewood Cliffs, 1970. | MR | Zbl

[6] M. A. Krasnosel'Skii-A. V. Pokrovskii, Systems with hysteresis (Russian), Nauka, Moscow, 1983 (English edition Springer 1989). | MR

[7] P. Krejčí, Hysteresis, convexity and dissipation in hyperbolic equations, Gakuto Int. Ser. Math. Sci. Appl., Vol. 8, Gakkotosho, Tokyo, 1996. | MR | Zbl

[8] G. Tronel-A. A. Vladimirov, On BV-type hysteresis operators, Nonlinear Anal., 39 (2000), 79-98. | MR | Zbl

[9] A. Visintin, Differential models of hysteresis, Springer, Berlin-Heidelberg, 1994. | MR | Zbl