On the curvature of moduli space of special Lagrangian submanifolds
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 349-362
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
In this paper we study the curvature tensor of the Riemannian metric defined in a natural way on the moduli space of compact special Lagrangian submanifolds of a Calabi-Yau manifold. We state some curvature properties and we prove that the Ricci curvature is non negative under an assumption on the determinant of $g$.
@article{BUMI_2002_8_5B_2_a4,
author = {Nannicini, Antonella},
title = {On the curvature of moduli space of special {Lagrangian} submanifolds},
journal = {Bollettino della Unione matematica italiana},
pages = {349--362},
year = {2002},
volume = {Ser. 8, 5B},
number = {2},
zbl = {1098.14026},
mrnumber = {MR1911195},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a4/}
}
Nannicini, Antonella. On the curvature of moduli space of special Lagrangian submanifolds. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 349-362. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a4/