Remarks on the quasiconvex envelope of some functions depending on quadratic forms
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 469-486.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We compute the quasiconvex envelope of certain functions defined on the space $M_{mn}$ of real $m \times n$ matrices. These functions are basically functions of a quadratic form on $M_{mn}$. The quasiconvex envelope computation is applied to densities that are related to the James-Ericksen elastic stored energy function.
In questo lavoro calcoliamo la chiusura quasi convessa di alcune funzioni definite sullo spazio $M_{mn}$ delle matrici reali $m \times n$ attraverso forme quadratiche. I risultati sono applicati ad alcune funzioni relative alla densità di energia elastica di James e Ericksen.
@article{BUMI_2002_8_5B_2_a10,
     author = {Bousselsal, M. and Le Dret, H.},
     title = {Remarks on the quasiconvex envelope of some functions depending on quadratic forms},
     journal = {Bollettino della Unione matematica italiana},
     pages = {469--486},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {2},
     year = {2002},
     zbl = {1177.49009},
     mrnumber = {475169},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a10/}
}
TY  - JOUR
AU  - Bousselsal, M.
AU  - Le Dret, H.
TI  - Remarks on the quasiconvex envelope of some functions depending on quadratic forms
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 469
EP  - 486
VL  - 5B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a10/
LA  - en
ID  - BUMI_2002_8_5B_2_a10
ER  - 
%0 Journal Article
%A Bousselsal, M.
%A Le Dret, H.
%T Remarks on the quasiconvex envelope of some functions depending on quadratic forms
%J Bollettino della Unione matematica italiana
%D 2002
%P 469-486
%V 5B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a10/
%G en
%F BUMI_2002_8_5B_2_a10
Bousselsal, M.; Le Dret, H. Remarks on the quasiconvex envelope of some functions depending on quadratic forms. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 469-486. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a10/

[1] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 64 (1977), 337-403. | MR | Zbl

[2] K. Bhattacharya-G. Dolzman, Relaxation of some multi-well problems, to appear, 1998. | MR | Zbl

[3] M. Bousselsal-B. Brighi, Rank-one-convex and quasiconvex envelopes for functions depending on quadratic forms, J. Convex Anal., 4 (1997), 305-319. | MR | Zbl

[4] C. Collins-M. Luskin, Numerical modeling of the microstructure of crystals with symmetry-related variants, in Proceedings of the ARO US-Japan Workshop on Smart/Intelligent Materials and Systems, Honolulu, Hawaii, Technomic Publishing Company, Lancaster, PA, 1990.

[5] B. Dacorogna, Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, no. 78, Springer-Verlag, Berlin, 1989. | MR | Zbl

[6] R. V. Kohn-G. Strang, Explicit relaxation of a variational problem in optimal design, Bull. A.M.S., 9 (1983), 211-214. | fulltext mini-dml | MR | Zbl

[7] R. V. Kohn-G. Strang, Optimal design and relaxation of variational problems, I, II and III, Comm. Pure Appl. Math., 39 (1986), 113-137, 139-182 and 353-377. | MR | Zbl

[8] H. Le Dret-A. Raoult, The quasiconvex envelope of the Saint Venant-Kirchhoff stored energy function, Proc. Roy. Soc. Edinburgh A, 125 (1995), 1179-1192. | MR | Zbl

[9] H. Le Dret-A. Raoult, Quasiconvex envelopes of stored energy densities that are convex with respect to the strain tensor, in Calculus of Variations, Applications and Computations, Pont-a-Mousson 1994 (C. Bandle, J. Bemelmans, M. Chipot, J. Saint Jean Paulin, I. Shafrir eds.), 138-146, Pitman Research Notes in Mathematics, Longman, 1995. | MR | Zbl

[10] C. B. Jr. Morrey, Quasiconvexity and the semicontinuity of multiple integrals, Pacific J. Math., 2 (1952), 25-53. | fulltext mini-dml | MR | Zbl

[11] C. B. Jr. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, 1966. | MR | Zbl

[12] V. Šverák, Rank-one-convexity does not imply quasiconvexity, Proc. Royal Soc. Edinburgh A, 120 (1992), 185-189. | MR | Zbl