Nodal solutions for scalar curvature type equations with perturbation terms on compact Riemannian manifolds
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 205-226

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we study the nodal solutions for scalar curvature type equations with perturbation. The main results concern the existence of such solutions and the exact description of their zero set. From this we deduce, in particular cases, some multiplicity results.
@article{BUMI_2002_8_5B_1_a9,
     author = {Djadli, Zindine and Jourdain, Antoinette},
     title = {Nodal solutions for scalar curvature type equations with perturbation terms on compact {Riemannian} manifolds},
     journal = {Bollettino della Unione matematica italiana},
     pages = {205--226},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {1},
     year = {2002},
     zbl = {1177.58016},
     mrnumber = {MR1881932},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a9/}
}
TY  - JOUR
AU  - Djadli, Zindine
AU  - Jourdain, Antoinette
TI  - Nodal solutions for scalar curvature type equations with perturbation terms on compact Riemannian manifolds
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 205
EP  - 226
VL  - 5B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a9/
LA  - en
ID  - BUMI_2002_8_5B_1_a9
ER  - 
%0 Journal Article
%A Djadli, Zindine
%A Jourdain, Antoinette
%T Nodal solutions for scalar curvature type equations with perturbation terms on compact Riemannian manifolds
%J Bollettino della Unione matematica italiana
%D 2002
%P 205-226
%V 5B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a9/
%G en
%F BUMI_2002_8_5B_1_a9
Djadli, Zindine; Jourdain, Antoinette. Nodal solutions for scalar curvature type equations with perturbation terms on compact Riemannian manifolds. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 205-226. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a9/