Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2002_8_5B_1_a3, author = {Arenas, F. G. and S\'anchez-Granero, M. A.}, title = {A new metrization theorem}, journal = {Bollettino della Unione matematica italiana}, pages = {109--122}, publisher = {mathdoc}, volume = {Ser. 8, 5B}, number = {1}, year = {2002}, zbl = {1072.54511}, mrnumber = {1717184}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a3/} }
Arenas, F. G.; Sánchez-Granero, M. A. A new metrization theorem. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 109-122. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a3/
[1] Tilings in topological spaces, Int. Jour. of Maths. and Math. Sci., 22 (1999), 3, 611-616. | MR | Zbl
,[2] A characterization of non-archimedeanly quasimetrizable spaces, Rend. Istit. Mat. Univ. Trieste Suppl., 30 (1999), 21-30. | Zbl
- ,[3] A new aproach to metrization, Topology and its. Appl., to appear. | Zbl
- ,[4] Hereditarily closure-preserving collections and metrizability, Proc.-Amer.-Math.-Soc., 51 (1975), 483-488. | MR | Zbl
- - ,[5] General Topology, Heldermann Verlag, Berlin, 1989. | MR | Zbl
,[6] Quasi-Uniform Spaces, Lecture Notes Pure Appl. Math., 77, Marcel Dekker, New York, 1982. | MR | Zbl
- ,[7] Closed mappings and metric spaces, Proc. Japan Acad., 32 (1956), 10-14. | fulltext mini-dml | MR | Zbl
- ,[8] A condition for the metrizability of topological spaces and for $n$-dimensionality, Sci. Rep. Tokyo Kyoiku Daigaku Sec. A, 5 (1955), 33-36. | MR | Zbl
,[9] Topics in general topology, North Holland, 1989. | MR | Zbl
- ,[10] Metrizability of decomposition spaces, Proc. Amer. Math. Soc., 7 (1956), 690-700. | MR | Zbl
,[11] $\aleph$-spaces and $g$-metrizable spaces and CF family, Topology Appl., 82 (1998), 153-159. | MR | Zbl
,