A new metrization theorem
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 109-122.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We give a new metrization theorem on terms of a new structure introduced by the authors in [2] and called fractal structure. As a Corollary we obtain Nagata-Smirnov’s and Uryshon’s metrization Theorems.
Presentiamo un nuovo teorema di metrizzazione, utilizzando una nuova struttura introdotta dagli autori in [2] detta struttura frattale. Come corollario otteniamo i teoremi di metrizzazione di Nagata-Smirnov e di Uryshon.
@article{BUMI_2002_8_5B_1_a3,
     author = {Arenas, F. G. and S\'anchez-Granero, M. A.},
     title = {A new metrization theorem},
     journal = {Bollettino della Unione matematica italiana},
     pages = {109--122},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {1},
     year = {2002},
     zbl = {1072.54511},
     mrnumber = {1717184},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a3/}
}
TY  - JOUR
AU  - Arenas, F. G.
AU  - Sánchez-Granero, M. A.
TI  - A new metrization theorem
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 109
EP  - 122
VL  - 5B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a3/
LA  - en
ID  - BUMI_2002_8_5B_1_a3
ER  - 
%0 Journal Article
%A Arenas, F. G.
%A Sánchez-Granero, M. A.
%T A new metrization theorem
%J Bollettino della Unione matematica italiana
%D 2002
%P 109-122
%V 5B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a3/
%G en
%F BUMI_2002_8_5B_1_a3
Arenas, F. G.; Sánchez-Granero, M. A. A new metrization theorem. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 109-122. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a3/

[1] F. G. Arenas, Tilings in topological spaces, Int. Jour. of Maths. and Math. Sci., 22 (1999), 3, 611-616. | MR | Zbl

[2] F. G. Arenas-M. A. Sánchez-Granero, A characterization of non-archimedeanly quasimetrizable spaces, Rend. Istit. Mat. Univ. Trieste Suppl., 30 (1999), 21-30. | Zbl

[3] F. G. Arenas-M. A. Sánchez-Granero, A new aproach to metrization, Topology and its. Appl., to appear. | Zbl

[4] D. Burke-R. Engelking-D. Lutzer, Hereditarily closure-preserving collections and metrizability, Proc.-Amer.-Math.-Soc., 51 (1975), 483-488. | MR | Zbl

[5] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989. | MR | Zbl

[6] P. Fletcher-W. F. Lindgren, Quasi-Uniform Spaces, Lecture Notes Pure Appl. Math., 77, Marcel Dekker, New York, 1982. | MR | Zbl

[7] S. Hanai-K. Morita, Closed mappings and metric spaces, Proc. Japan Acad., 32 (1956), 10-14. | fulltext mini-dml | MR | Zbl

[8] K. Morita, A condition for the metrizability of topological spaces and for $n$-dimensionality, Sci. Rep. Tokyo Kyoiku Daigaku Sec. A, 5 (1955), 33-36. | MR | Zbl

[9] K. Morita-J. Nagata, Topics in general topology, North Holland, 1989. | MR | Zbl

[10] A. H. Stone, Metrizability of decomposition spaces, Proc. Amer. Math. Soc., 7 (1956), 690-700. | MR | Zbl

[11] G. Zhi-Min, $\aleph$-spaces and $g$-metrizable spaces and CF family, Topology Appl., 82 (1998), 153-159. | MR | Zbl