$C^{1,\beta}$-partial regularity of $p$-harmonic maps at the free boundary
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 79-107.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove the partial $C^{1, \beta}$-regolarity up to the free boundary of the $p$-harmonic maps which minimize the $p$-energy $\int |Du|^{p} \, dx$.
Dimostriamo la $C^{1, \beta}$-regolarità parziale fino alla frontiera libera delle mappe $p$-armoniche che minimizzano la $p$-energia $\int |Du|^{p} \, dx$.
@article{BUMI_2002_8_5B_1_a2,
     author = {M\"uller, Thomas},
     title = {$C^{1,\beta}$-partial regularity of $p$-harmonic maps at the free boundary},
     journal = {Bollettino della Unione matematica italiana},
     pages = {79--107},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {1},
     year = {2002},
     zbl = {1177.49010},
     mrnumber = {1638151},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a2/}
}
TY  - JOUR
AU  - Müller, Thomas
TI  - $C^{1,\beta}$-partial regularity of $p$-harmonic maps at the free boundary
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 79
EP  - 107
VL  - 5B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a2/
LA  - en
ID  - BUMI_2002_8_5B_1_a2
ER  - 
%0 Journal Article
%A Müller, Thomas
%T $C^{1,\beta}$-partial regularity of $p$-harmonic maps at the free boundary
%J Bollettino della Unione matematica italiana
%D 2002
%P 79-107
%V 5B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a2/
%G en
%F BUMI_2002_8_5B_1_a2
Müller, Thomas. $C^{1,\beta}$-partial regularity of $p$-harmonic maps at the free boundary. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 79-107. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a2/

[1] H. W. Alt, Lineare Funktionalanalysis, Springer, second edition 1992. | Zbl

[2] F. Duzaar-A. Gastel, Minimizing $p$-harmonic maps at a free boundary, Boll. Unione Mat. Ital. Sez. B Artci. Ric. Mat. (8), 1 (1998), 391-406. | fulltext bdim | fulltext mini-dml | MR | Zbl

[3] N. Fusco-J. Hutchinson, Partial regularity for minimisers of certain functionals having nonquadratic growth, Ann. Mat. Pura Appl. (4), 155 (1989), 1-24. | MR | Zbl

[4] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies, 105, Princeton University Press, 1983. | MR | Zbl

[5] M. Giaquinta-G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals, Manuscripta Math., 57 (1986), 55-99. | MR | Zbl

[6] D. Gilbarg-N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der mathematischen Wissenschaften 224, Springer, second edition 1998. | Zbl

[7] C. Hamburger, Regularity of differential forms minimizing degenerate elliptic functionals, J. Reine Angew. Math., 431 (1992), 7-64. | MR | Zbl

[8] K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems, Acta Math., 138 (1977), 219-240. | MR | Zbl