Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2002_8_5B_1_a1, author = {Rykov, Yu. G.}, title = {On the nonhamiltonian character of shocks in {2-D} pressureless gas}, journal = {Bollettino della Unione matematica italiana}, pages = {55--78}, publisher = {mathdoc}, volume = {Ser. 8, 5B}, number = {1}, year = {2002}, zbl = {1096.35117}, mrnumber = {1049623}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a1/} }
Rykov, Yu. G. On the nonhamiltonian character of shocks in 2-D pressureless gas. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 55-78. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a1/
[1] A nonlinear theory of generalized functions, Lect. Notes in Math., 1421, Springer Verlag (1990). | MR | Zbl
,[2] On zero-pressure gas dynamics. Advances in Kinetic Theory and Computing, series on Advances in Mathematics and Applied Sciences, World Scientific, 22 (1994), 171-190. | MR | Zbl
,[3] Solutions en dualité pour les gaz sans pression, C. R. Acad. Sci. Paris, Série I, 326 (1998), 1073-1078. | MR | Zbl
- ,[4] Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness, to appear in Comm. Part. Diff. Eq. | MR | Zbl
- ,[5] Elementary introduction to new generalized functions, North-Holland Math. Studies, 113 (1985). | MR | Zbl
,[6] Multiplication of distributions, Bull. Amer. Math. Soc., 23, No. 2 (1990), 251-268. | fulltext mini-dml | MR | Zbl
,[7] Compensated compactness and general systems of conservation laws, Trans. Amer. Math. Soc., 292, No. 2 (1985), 383-420. | MR | Zbl
,[8] Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys., 108 (1987), 667-689. | fulltext mini-dml | MR | Zbl
- ,[9] The Lax-Oleinik variational principle for some 1-D systems of quasilinear equations, Uspehi matem. nauk, 50, vyp. 1 (1995), 193-194. | MR | Zbl
- - ,[10] Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380. | fulltext mini-dml | MR | Zbl
- - ,[11] Existence globale pour le système des gas sans pression, C. R. Acad. Sci. Paris, 321, Série I (1995), 171-174. | MR | Zbl
,[12] Nonlinear random waves and turbulence in nondispersive media: waves, rays and particles, Manchester: Manchester University press (1991). | MR | Zbl
- - ,[13] The partial differential equation $u_t+uu_x=\mu u_{xx}$, Comm. Pure Appl. Math., 3, No. 3 (1950), 201-230. | MR | Zbl
,[14] Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. Pure Appl. Math., 7, No. 1 (1954), 159-193. | MR | Zbl
,[15] Hyperbolic systems of conservation laws, Comm. Pure Appl. Math., 10, No. 4 (1957), 537-566. | MR | Zbl
,[16] Compressible fluid flow and systems of conservation laws in several space variables, Appl. Math. Sci., 53 (1984). | MR | Zbl
,[17] Cauchy problem for nonlinear first-order quasilinear equations with discontinuous initial data, Trudy Mosk. Matem. Ob-va, 5 (1956), 433-454. | MR
,[18] The variational principle for the 2-D system of gas dynamics without pressure, Uspehi Matem. nauk, 51, vyp. 1 (1996), 165-166 (in Russian). | MR | Zbl
,[19] The singularities of type of shock waves in pressureless medium, the solutions in the sense of measures and Colombeau's sense, KIAM Preprint, No. 30 (1998) (in Russian).
,[20] The propagation of shock waves in 2-D system of pressureless gas dynamics. Hyperbolic Problems: Theory, Numerics, Applications, Seventh International Conference in Zürich, February 1998, ISNM, 30, 813-822. | MR | Zbl
,[21] The large-scale structure of the Universe: Turbulence, intermittency, structures in a self-gravitating medium, Reviews of Modern Phys., 61, No. 2 (1989), 185-220. | MR | Zbl
- ,[22] The inviscid Burgers equation with initial data of Brownian type, Commun. Math. Phys., 148 (1992), 623-641. | fulltext mini-dml | MR | Zbl
- - ,[23] Burgers' equation, devil's staircases and the mass distribution function for large-scale structures, Astron. Astrophys., 289 (1994), 325-356.
- - - ,[24] Gravitational instability: An approximate theory for large density perturbations, Astron. Astrophys., 5 (1970), 84-89.
,[25] Conjecture on structure of solutions of Riemann problem for 2-D gas dynamic systems, SIAM J. Math. Anal., 21, No. 3 (1990), 593-630. | MR | Zbl
- ,