Symétrisations indépendantes du temps pour certains opérateurs du type de Schrödinger. I
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 1-53.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We give sufficient conditions and necessary conditions for the Cauchy problem for certain operators of Schrödinger type to be well posed in the Sobolev spaces. Operators of which we treat are Schrödinger operators with complex-valued vector potentials, those generalizations to 2-evolution operators in the sense of Petrowsky and certain Leray-Volevich systems of linear partial differential operators. The method that we use in this article is time-independent $L^{2}$-symmetrization of operators which has been proposed in our Notes [52] to [54].
Si danno condizioni sufficienti e condizioni necessarie affinché il problema di Cauchy per alcuni operatori di tipo Schrödinger sia ben posto in spazi di Sobolev. Gli operatori qui considerati sono operatori di Schrödinger con potenziali vettoriali complessi, una generalizzazione degli operatori di 2-evoluzione nel senso di Petrowsky, e alcuni sistemi tipo Leray-Volevich di operatori lineari a derivate parziali. Il metodo che usiamo in questo articolo è la simmetrizazione $L^{2}$ degli operatori non dipendenti dal tempo, che abbiamo già usato nelle Note [52]-[54].
@article{BUMI_2002_8_5B_1_a0,
     author = {Takeuchi, Jiro},
     title = {Sym\'etrisations ind\'ependantes du temps pour certains op\'erateurs du type de {Schr\"odinger.} {I}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {1--53},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {1},
     year = {2002},
     zbl = {1121.35119},
     mrnumber = {1178678},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a0/}
}
TY  - JOUR
AU  - Takeuchi, Jiro
TI  - Symétrisations indépendantes du temps pour certains opérateurs du type de Schrödinger. I
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 1
EP  - 53
VL  - 5B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a0/
ID  - BUMI_2002_8_5B_1_a0
ER  - 
%0 Journal Article
%A Takeuchi, Jiro
%T Symétrisations indépendantes du temps pour certains opérateurs du type de Schrödinger. I
%J Bollettino della Unione matematica italiana
%D 2002
%P 1-53
%V 5B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a0/
%F BUMI_2002_8_5B_1_a0
Takeuchi, Jiro. Symétrisations indépendantes du temps pour certains opérateurs du type de Schrödinger. I. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 1-53. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a0/

[1] A. Baba, The $L^2$-wellposed Cauchy problem for Schrödinger type equations, Tsukuba J. Math., 16 (1992), 235-256. | MR | Zbl

[2] A. Baba, The $H^\infty$-wellposed Cauchy problem for Schrödinger type equations, Tsukuba J. Math., 18 (1994), 101-117. | MR | Zbl

[3] G. D. Birkhoff, Quantum mechanics and asymptotic series, Bull. Amer. Math. Soc., 39 (1933), 681-700. | fulltext mini-dml | MR | Zbl

[4] A. P. Calderón-R. Vaillancourt, A class of bounded pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A., 69 (1972), 1185-1187. | MR | Zbl

[5] H. Cartan, Formes Différentielles, Cours de Mathématiques II, Collection Méthodes, Hermann, Paris, 1967. | MR | Zbl

[6] P. Constantin-J. C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1 (1988), 413-439. | MR | Zbl

[7] R. Courant-D. Hilbert, Methods of Mathematical Physics, vol. I, Interscience Publishers, New York, 1953. | MR | Zbl

[8] S. Doi, On the Cauchy problem for Schrödinger type equations and the regularity of solutions, J. Math. Kyoto Univ., 34 (1994), 319-328. | fulltext mini-dml | MR | Zbl

[9] S. Doi, Remarks on the Cauchy problem for Schrödinger type equations, Comm. Partial Differential Equations, 21 (1996), 163-178. | MR | Zbl

[10] L. Garding-T. Kotake-J. Leray, Uniformisation et développement asymptotique de la solution du problème de Cauchy linéaire à données holomorphes, Bull. Soc. Math. France, 92 (1964), 263-361. | fulltext mini-dml | MR | Zbl

[11] S. Hara, A necessary condition for $H^\infty$-wellposed Cauchy problem of Schrödinger type equations with variable coefficients, J. Math. Kyoto Univ., 32 (1992), 287-305. | fulltext mini-dml | MR | Zbl

[12] N. Hayshi-K. Nakamitsu-M. Tsutsumi, On solutions of the initial value problem for the nonlinear Schrödinger equations, J. Funct. Anal., 71 (1987), 218-245. | MR | Zbl

[13] E. Hille-R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, 1957. | MR | Zbl

[14] L. Hörmander, The Analysis of Linear Partial Differential Operators, vol. III, Springer-Verlag, Berlin, 1985. | Zbl

[15] G. Hufford, On the characteristic matrix of a matrix of differential operators, J. Diff. Equations, 1 (1965), 27-38. | MR | Zbl

[16] W. Ichinose, Some remarks on the Cauchy problem for Schrödinger type equations, Osaka J. Math., 21 (1984), 565-581. | fulltext mini-dml | MR | Zbl

[17] W. Ichinose, Sufficient condition on $H^\infty$ wellposedness for Schrödinger type equations, Comm. Partial Differential Equations, 9 (1984), 33-48. | MR | Zbl

[18] W. Ichinose, The Cauchy problem for Schrödinger type equations with variables coefficients, Osaka J. Math., 24 (1987), 853-886. | fulltext mini-dml | MR | Zbl

[19] W. Ichinose, On $L^2$ well-posedness of the Cauchy problem for Schrödinger type equations on the Riemannian manifold and Maslov theory, Duke Math. J., 56 (1988), 549-588. | fulltext mini-dml | MR | Zbl

[20] W. Ichinose, A note on the Cauchy problem for Schrödinger type equations on the Riemannian manifold, Math. Japonica, 35 (1990), 205-213. | MR | Zbl

[21] W. Ichinose, On the Cauchy problem for Schrödinger type equations and Fourier integral operators, J. Math. Kyoto Univ., 33 (1993), 583-620. | fulltext mini-dml | MR | Zbl

[22] W. Ichinose, On a necessary condition for $L^2$ well-posedness of the Cauchy problem for some Schrödinger type equations with a potential term, J. Math. Kyoto Univ., 33 (1993), 647-663. | fulltext mini-dml | MR | Zbl

[23] K. Kajitani, The Cauchy problem for Schrödinger type equations with variable coefficients, J. Math. Soc. Japan, 50 (1998), 179-202. | fulltext mini-dml | MR | Zbl

[24] K. Kajitani, The Cauchy problem for Schrödinger type equations, Bull. Sc. Math., 2e série, 119 (1995), 459-473. | MR | Zbl

[25] T. Kato, Nonlinear Schrödinger equations, Schrödinger Operators, Springer Lecture Notes in Physics, 345 (1989), 218-263. | Zbl

[26] T. Kato, On the Cauchy problemfor the (generalized) Korteweg-de Vries equation, Studies in Appl. Math. Adv. in Math., Suppl. Studies, 8 (1983), 93-128. | MR | Zbl

[27] H. Kumano-Go, Pseudo-Differential Operators, MIT Press, 1981. | Zbl

[28] J. Leray, Hyperbolic Differential Equations, Inst. Adv. Study, Princeton, (1953). | MR | Zbl

[29] J. Leray, Lagrangian Analysis and Quantum Mechanics. A mathematical structure related to asymptotic expansions and the Maslov index, MIT Press, 1981. | MR | Zbl

[30] V. P. Maslov, Theory of Perturbations and Asymptotic Methods, Moskow, 1965 (en russe); French translation from Russian, Dunod, Paris, 1970.

[31] M. Miyake, On Cauchy-Kowalewski's theorem for general systems, Publ. Res. Inst. Math. Sci. Kyoto Univ., 15 (1979), 315-337. | fulltext mini-dml | MR | Zbl

[32] S. Mizohata, Some remarks on the Cauchy problem, J. Math. Kyoto Univ., 1 (1961), 109-127. | fulltext mini-dml | MR | Zbl

[33] S. Mizohata, On Kowalewskian systems, Russian Math. Surveys, 29-7 (1974), 223-235. | MR | Zbl

[34] S. Mizohata, On some Schrödinger type equations, Proc. Japan Acad., 57 (1981), 81-84. | fulltext mini-dml | MR | Zbl

[35] S. Mizohata, Sur quelques équations du type Schödinger, Séminaire J. Vaillant 1980-1981, Univ. Paris-VI. | Zbl

[36] S. Mizohata, Sur quelques équations du type Schödinger, Journées «Équations aux Dérivées Partielles», Saint-Jean-de-Monts, Soc. Math. France, 1981. | fulltext mini-dml | Zbl

[37] S. Mizohata, On the Cauchy Problem, Notes and Reports in Math., 3, Academic Press, 1985. | MR | Zbl

[38] I. G. Petrowsky, Über das Cauchysche Problem für ein System linearer partieller Differentialgleichungen im Gebiete der nicht-analytischen Funktionen, Bull. Univ. État Moscou, 1 (1938), 1-74. | Jbk 64.1156.02

[39] E. Schrödinger, Quantisierung als Eigenwertproblem (Vierte Mitteilung), Ann. der Physik, 81 (1926), 109-139. | Jbk 52.0966.03

[40] E. Schrödinger, Gesammelte Abhandlungen, 3: Beiträge zur Quantentheorie Herausgegeben von der Österreichischen Akademie der Wissenschaften, Verlag der Österreichischen Akademie der Wissenschaften, Wien, 1984. | Jbk 48.0009.04 | MR

[41] J. Takeuchi, A necessary condition for the well-posedness of the Cauchy problem for certain class of evolution equations, Proc. Japan Acad., 50 (1974), 133-137. | fulltext mini-dml | MR | Zbl

[42] J. Takeuchi, Some remarks on my paper «On the Cauchy problem for some nonkowalewskian equations with distinct characteristic roots», J. Math. Kyoto Univ., 24 (1984), 741-754. | fulltext mini-dml | MR | Zbl

[43] J. Takeuchi, On the Cauchy problem for systems of linear partial differential equations of Schrödinger type, Bull. Iron and Steel Technical College, 18 (1984), 25-34. | MR

[44] J. Takeuchi, A necessary condition for $H^\infty$-wellposedness of the Cauchy problem for linear partial differential operators of Schrödinger type, J. Math. Kyoto Univ., 25 (1985), 459-472. | fulltext mini-dml | MR | Zbl

[45] J. Takeuchi, Le problème de Cauchy pour quelques équations aux dérivées partielles du type de Schrödinger, C. R. Acad. Sci. Paris, Série I, 310 (1990), 823-826. | MR | Zbl

[46] J. Takeuchi, Le problème de Cauchy pour quelques équations aux dérivées partielles du type de Schrödinger, II, C. R. Acad. Sci. Paris, Série I, 310 (1990), 855-858. | MR | Zbl

[47] J. Takeuchi, Le probleme de Cauchy pour certaines equations aux derivees partielles du type de Schrodinger, III, C. R. Acad. Sci. Paris, Serie I, 312 (1991), 341-344. | MR | Zbl

[48] J. Takeuchi, Le probleme de Cauchy pour certaines equations aux derivees partielles du type de Schrodinger, IV, C. R. Acad. Sci. Paris, Serie I, 312 (1991), 587-590. | MR | Zbl

[49] J. Takeuchi, Le probleme de Cauchy pour certains systemes de Leray-Volevi du type de Schrodinger, V, C. R. Acad. Sci. Paris, Serie I, 312 (1991), 799-802. | MR | Zbl

[50] J. Takeuchi, Le probleme de Cauchy pour certaines equations aux derivees partielles du type de Schrodinger, VI, C. R. Acad. Sci. Paris, Serie I, 313 (1991), 761-764. | MR | Zbl

[51] J. Takeuchi, Le probleme de Cauchy pour certaines equations aux derivees partielles du type de Schrodinger, VII, C. R. Acad. Sci. Paris, Serie I, 314 (1992), 527-530. | MR | Zbl

[52] J. Takeuchi, Le probleme de Cauchy pour certaines equations aux derivees partielles du type de Schrodinger, VIII; symetrisations independantes du temps, C. R. Acad. Sci. Paris, Serie I, 315 (1992), 1055-1058. | Zbl

[53] J. Takeuchi, Le probleme de Cauchy pour certaines equations aux derivees partielles du type de Schrodinger, IX; symetrisations independantes du temps, C. R. Acad. Sci. Paris, Serie I, 316 (1993), 1025-1028. | Zbl

[54] J. Takeuchi, Le probleme de Cauchy pour certaines equations aux derivees partielles du type de Schrodinger, X; symetrisations independantes du temps, Proc. Japan Acad., Ser. A, 69 (1993), 189-192. | fulltext mini-dml | Zbl

[55] J. Takeuchi, Le probleme de Cauchy pour certaines equations aux derivees partielles du type de Schrodinger, Thèse de Doctorat de l'Université Paris-VI, Octobre 1995, pp. 115. | Zbl

[56] S. Tarama, On the $H^\infty$-wellposed Cauchy problem for some Schrodinger type equations, Mem. Fac. Eng. Kyoto Univ., 55 (1993), 143-153. | MR

[57] L. R. Volevich, On general systems of differential equations, Soviet Math. Dokl., 1 (1960), 458-461. | MR | Zbl

[58] L. R. Volevich, A problem of linear programming arising in differential equations, Uspehi Mat. Nauk., 18-3 (1963), 155-162 (en russe). | MR | Zbl

[59] C. Wagschal, Diverses formulations du problème de Cauchy pour un système d'équations aux dérivées partielles, J. Math. Pures et Appl., 53 (1974), 51-69. | MR | Zbl

[60] K. Yajima, On smoothing property of Schrodinger propagators, Functional Analytic Methods for partial differential equations, Proc. Intern. Conf. on Functional Analysis and its Applications, Springer Lecture Notes in Math., 1450 (1990), 20-35. | MR | Zbl

[61] K. Yosida, Functional Analysis, Springer-Verlag, 1965.