Matematica ed Ecologia: un’interazione feconda
Bollettino della Unione matematica italiana, Série 8, 5A (2002) no. 3, pp. 515-539.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{BUMI_2002_8_5A_3_a5,
     author = {Gatto, Marino},
     title = {Matematica ed {Ecologia:} un{\textquoteright}interazione feconda},
     journal = {Bollettino della Unione matematica italiana},
     pages = {515--539},
     publisher = {mathdoc},
     volume = {Ser. 8, 5A},
     number = {3},
     year = {2002},
     zbl = {1194.00040},
     mrnumber = {2778605},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5A_3_a5/}
}
TY  - JOUR
AU  - Gatto, Marino
TI  - Matematica ed Ecologia: un’interazione feconda
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 515
EP  - 539
VL  - 5A
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5A_3_a5/
LA  - it
ID  - BUMI_2002_8_5A_3_a5
ER  - 
%0 Journal Article
%A Gatto, Marino
%T Matematica ed Ecologia: un’interazione feconda
%J Bollettino della Unione matematica italiana
%D 2002
%P 515-539
%V 5A
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5A_3_a5/
%G it
%F BUMI_2002_8_5A_3_a5
Gatto, Marino. Matematica ed Ecologia: un’interazione feconda. Bollettino della Unione matematica italiana, Série 8, 5A (2002) no. 3, pp. 515-539. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5A_3_a5/

[1] T. R. Malthus, An Essay on the Principle of Population, London: Johnson, 1798.

[2] P. F. Verhulst, Recherches mathematiques sur la loi d’accroissement de la population, Mem. Acad. Roy. Belg., 18 (1845), 1-38. | fulltext EuDML

[3] A. J. Lotka, Elements of Physical Biology, Baltimore: Williams and Wilkins, 1924. | Jbk 51.0416.06

[4] V. Volterra, Variazioni e fluttazioni del numero d’individui in specie animali conviventi, Mem. Accad. Lincei, 6 (1926), 31-113. | Jbk 52.0450.06

[5] G. F. Gause, The struggle for existence, Baltimore: Williams and Wilkins, 1934.

[6] M. Begon - J. L. Harper - C. R. Townsend, Ecology, Oxford: Blackwell Scientific Publications, 1990.

[7] R. J. H. Beverton - S. J. Holt, On the Dvnamics of Exploited Fish Populations, London: H. M. Stationery Office, 1957.

[8] W. E. Ricker, Handbook of Computations for Biological Statistics of Fish Populations, vol. 119, Ottawa: Bull. Fish. Res. Board Can., 1958.

[9] H. S. Gordon, Economic theory of a common-property resource: the fishery, J. Pol. Econ., 62 (1954), 124-142.

[10] C. W. Clark, Mathematical Bioeconomics, New York: J. Wiley, 1976. | MR | Zbl

[11] L. S. Pontryagin - V. Boltyanskii - R. Gamkrelidze - E. Mischenko, The mathematical theory of optimal processes, New York and London: Interscience, 1962. | Zbl

[12] P. A. Samuelson, A Catenary turnpike theorem involving consumption and the golden rule, American Economic Review, 55 (1965), 486-496.

[13] R. M. May, Biological populations with non-overlapping generations: stable points, stable cycles and chaos, Science, 186 (1974), 645-647.

[14] R. Levins, Some demographic and genetic consequences of environmental heterogeneity for biological control, Bulletin of the Entomogical Society of America, 15 (1969), 237-240.

[15] I. Hanski - M. Gilpin, Metapopulation Biology: Ecology, Genetics, and Evolution, San Diego: Academic Press, 1997. | Zbl

[16] M. Gyllenberg - I. Hanski, Single-species metapopulation dynamics: a structured model, Theoretical Population Biology, 42 (1992), 35-61. | DOI | MR | Zbl

[17] J. C. Allen - W. M. Schaffer - D. Rosko, Chaos reduces species extinction by amplifying local population noise, Nature, 364 (1993), 229-232.

[18] R. Casagrandi - M. Gatto, A mesoscale approach to extinction risk in fragmented habitats, Nature, 400 (1999), 560-562.

[19] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, New York: Springer, 1995. | MR | Zbl