Harmonic functions on classical rank one balls
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 3, pp. 685-702.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In questo articolo studieremo le relazioni fra le funzioni armoniche nella palla iperbolica (sia essa reale, complessa o quaternionica), le funzione armoniche euclidee in questa palla, e le funzione pluriarmoniche sotto certe condizioni di crescita. In particolare, estenderemo al caso quaternionico risultati anteriori dell'autore (nel caso reale), e di A. Bonami, J. Bruna e S. Grellier (nel caso complesso).
@article{BUMI_2001_8_4B_3_a8,
     author = {Jaming, Philippe},
     title = {Harmonic functions on classical rank one balls},
     journal = {Bollettino della Unione matematica italiana},
     pages = {685--702},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {3},
     year = {2001},
     zbl = {1177.32002},
     mrnumber = {1406686},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a8/}
}
TY  - JOUR
AU  - Jaming, Philippe
TI  - Harmonic functions on classical rank one balls
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 685
EP  - 702
VL  - 4B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a8/
LA  - en
ID  - BUMI_2001_8_4B_3_a8
ER  - 
%0 Journal Article
%A Jaming, Philippe
%T Harmonic functions on classical rank one balls
%J Bollettino della Unione matematica italiana
%D 2001
%P 685-702
%V 4B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a8/
%G en
%F BUMI_2001_8_4B_3_a8
Jaming, Philippe. Harmonic functions on classical rank one balls. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 3, pp. 685-702. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a8/

[1] P. Ahern-J. Bruna-C. Cascante, $H^p$-theory for generalized $\mathcal{M}$-harmonic functions in the unit ball, Indiana Univ. Math. J., 45 (1996), 103-145. | MR | Zbl

[2] A. Bonami-J. Bruna-S. Grellier, On Hardy, BMO and Lipschitz spaces of invariant harmonic functions in the unit ball, Proc. London Math. Soc., 77 (1998), 665-696. | MR | Zbl

[3] E. Damek-A. Hulanicki-D. Müller-M. Peloso, Pluriharmonic $H^2$ functions on symmetric irreducible Siegel domains, Preprint, 1998. | Zbl

[4] ERDÉLY et al, editor, Higher Transcendental Functions I, Mac Graw Hill, 1953.

[5] S. HELGASON, editor, Differential geometry and symetric spaces, Academic Press, 1962. | MR | Zbl

[6] S. Helgason, Eigenspaces of the Laplacian; integral representations and Irreducibility, Jour. Func. Anal., 17 (1974), 328-353. | Zbl

[7] Ph. Jaming, Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces, Coll. Math., 80 (1999), pp. 63-82. | MR | Zbl

[8] K. D. Johnson-N. Wallach, Composition series and intertwining operators for the spherical principle series I, Trans. Amer. Math. Soc., 229 (1977), 137-173. | MR | Zbl

[9] J. B. Lewis, Eigenfunctions on symmetric spaces with distribution-valued boundary forms, Jour. Func. Anal., 29 (1978), 287-307. | MR | Zbl

[10] K. Minemura, Harmonic functions on real hyperbolic spaces, Hiroshima Math. J., 3 (1973), 121-151. | fulltext mini-dml | MR | Zbl

[11] W. Rudin, Function Theory in the Unit Ball of $C^n$, Springer, 1980. | MR | Zbl