The rank of the multiplication map for sections of bundles on curves
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 3, pp. 677-683.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Sia $X$ una curva liscia di genere $g\geq2$ ed $A$, $B$ fasci coerenti su $X$. Sia $\mu_{A, B}\colon H^{0} (X, A) \otimes H^{0} (X, B) \to H^{0} (X, A \otimes B)$ l'applicazione di moltiplicazione. Qui si dimostra che $\mu_{A, B}$ ha rango massimo se $A \cong \omega_{X}$ e $B$ è un fibrato stabile generico su $X$. Diamo un'interpretazione geometrica dell'eventuale non-surgettività di $\mu_{A, B}$ quando $A, B$ sono fibrati in rette generati da sezioni globali e $\deg(A) + \deg(B) \geq 3g-1$. Studiamo anche il caso $\text{dim} (\text{Coker} (\mu_{A, B})) \geq 2$.
@article{BUMI_2001_8_4B_3_a7,
     author = {Ballico, E.},
     title = {The rank of the multiplication map for sections of bundles on curves},
     journal = {Bollettino della Unione matematica italiana},
     pages = {677--683},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {3},
     year = {2001},
     zbl = {1136.14021},
     mrnumber = {274461},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a7/}
}
TY  - JOUR
AU  - Ballico, E.
TI  - The rank of the multiplication map for sections of bundles on curves
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 677
EP  - 683
VL  - 4B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a7/
LA  - en
ID  - BUMI_2001_8_4B_3_a7
ER  - 
%0 Journal Article
%A Ballico, E.
%T The rank of the multiplication map for sections of bundles on curves
%J Bollettino della Unione matematica italiana
%D 2001
%P 677-683
%V 4B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a7/
%G en
%F BUMI_2001_8_4B_3_a7
Ballico, E. The rank of the multiplication map for sections of bundles on curves. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 3, pp. 677-683. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a7/

[AK] A. Altman-S. Kleiman, Introduction to Grothendieck duality theory, Lect. Notes in Math., 146, Springer-Verlag, 1970. | MR | Zbl

[BR] E. Ballico-L. Ramella, The restricted tangent bundle of smooth curves in Grassmannians and flag varieties, Rocky Mountains J. Math. (to appear). | fulltext mini-dml | MR | Zbl

[Bu] D. C. Butler, Normal generation of vector bundles over a curve, J. Differ. Geom., 39 (1994), 1-34. | fulltext mini-dml | MR | Zbl

[E] D. Eisenbud, Linear sections of determinantal varieties, Am. J. Math., 110 (1988), 541-575. | MR | Zbl

[EKS] D. Eisenbud-J. Koh-M. Stillman, Determinantal equations for curves of high degree, Amer. J. Math., 110 (1989), 513-540. | MR | Zbl

[G] M. Green, Koszul cohomology and the geometry of projective varieties, J. Differ. Geom., 19 (1984), 125-171. | fulltext mini-dml | MR | Zbl

[GL] M. Green-R. Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math., 83 (1986), 73-90. | MR | Zbl

[La] G. Laumon, Fibrés vectoriels speciaux, Bull. Soc. Math. France, 119 (1991), 97-119. | fulltext mini-dml | MR | Zbl

[N] M. Nagata, On selfintersection number of vector bundles of rank 2 on Riemann surface, Nagoya Math. J., 37 (1970), 191-196. | fulltext mini-dml | MR | Zbl

[NR] M. S. Narasimhan-S. Ramanan, Deformations of the moduli space of vector bundles over an algebraic curve, Ann. of Math., 101 (1975), 391-417. | MR | Zbl

[Re] R. Re, Multiplication of sections and Clifford bounds for stable vector bundles, Comm. in Alg., 26 (1998), 1931-1944. | MR | Zbl

[Su] N. Sundaram, Special divisors and vector bundles, Tôhoku Math. J., 39 (1987), 175-213. | fulltext mini-dml | MR | Zbl