Neutral functional differential and integrodifferential inclusions in Banach spaces
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 3, pp. 767-782.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In questo lavoro studiamo l'esistenza di soluzioni deboli su un intervallo compatto di problemi con valore iniziale per inclusioni funzionali neutre differenziali e integrodifferenziali in spazi di Banach. I risultati sono ottenuti usando un teorema di punto fisso per mappe condensanti dovuto a Martelli.
@article{BUMI_2001_8_4B_3_a14,
     author = {Benchohra, M. and Ntouyas, S. K.},
     title = {Neutral functional differential and integrodifferential inclusions in {Banach} spaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {767--782},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {3},
     year = {2001},
     zbl = {1177.34100},
     mrnumber = {591679},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a14/}
}
TY  - JOUR
AU  - Benchohra, M.
AU  - Ntouyas, S. K.
TI  - Neutral functional differential and integrodifferential inclusions in Banach spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 767
EP  - 782
VL  - 4B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a14/
LA  - en
ID  - BUMI_2001_8_4B_3_a14
ER  - 
%0 Journal Article
%A Benchohra, M.
%A Ntouyas, S. K.
%T Neutral functional differential and integrodifferential inclusions in Banach spaces
%J Bollettino della Unione matematica italiana
%D 2001
%P 767-782
%V 4B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a14/
%G en
%F BUMI_2001_8_4B_3_a14
Benchohra, M.; Ntouyas, S. K. Neutral functional differential and integrodifferential inclusions in Banach spaces. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 3, pp. 767-782. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a14/

[1] J. Banas-K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel-Dekker, New York, 1980. | MR | Zbl

[2] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin-New York, 1992. | MR | Zbl

[3] L. Erbe-Q. Kong-B. Zhang, Oscillation Theory for Functional Differential Equations, Pure and Applied Mathematics, 1994. | MR | Zbl

[4] J. Hale, Theory of Functional Differential Equations, Springer, New York, 1977. | MR | Zbl

[5] J. Henderson, Boundary Value Problems for Functional Differential Equations, World Scientific, 1995. | MR

[6] E. Hernandez-H. R. Henriquez, Existence results for partial neutral functional differential equations with unbounded delay, J. Math. Anal. Appl. 221 (1998), 452-475. | MR | Zbl

[7] E. Hernandez-H. R. Henriquez, Existence of periodic solutions of partial neutral functional differential equations with unbounded delay, J. Math. Anal. Appl., 221 (1998), 499-522. | MR | Zbl

[8] S. Hu-N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer, Dordrecht, Boston, London, 1997. | MR | Zbl

[9] A. Lazota-Z. Opial, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 13 (1965), 781-786. | MR | Zbl

[10] M. Martelli, A Rothe's type theorem for non-compact acyclic-valued map, Boll. Un. Mat. Ital., 4 (1975), 70-76. | MR | Zbl

[11] S. Ntouyas, Global existence for neutral functional integrodifferential equations, Nonlinear Anal., 30 (1997), 2133-2142. | MR | Zbl

[12] S. Ntouyas, Initial and boundary value problems for functional differential equations via the topological transversality method: A survey, Bull. Greek Math. Soc., 40 (1998), 3-41. | MR | Zbl

[13] S. Ntouyas-Y. Sficas-P. Tsamatos, Existence results for initial value problems for neutral functional differential equations, J. Differential Equations, 114 (1994), 527-537. | MR | Zbl

[14] N. Papageorgiou, Boundary value problems for evolution inclusions, Comment. Math. Univ. Carol., 29 (1988), 355-363. | fulltext mini-dml | MR | Zbl

[15] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. | MR | Zbl

[16] K. Yosida, Functional Analysis, 6th edn, Springer-Verlag, Berlin, 1980. | MR