Gradient regularity for minimizers of functionals under $p$-$q$ subquadratic growth
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 3, pp. 571-586.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Si prova la maggior sommabilità del gradiente dei minimi locali di funzionali integrali della forma $$\int_{\Omega}f(Du) dx,$$ dove $f$ soddisfa l'ipotesi di crescita $$ |\xi|^{p}-c_{1}\leq f(\xi) \leq c( 1+|\xi|^{q}),$$ con $1 p q \leq 2$. L'integrando $f$ è $C^{2}$ e $DDf$ ha crescita $p-2$ dal basso e $q-2$ dall'alto.
@article{BUMI_2001_8_4B_3_a1,
     author = {Leonetti, F. and Mascolo, E. and Siepe, F.},
     title = {Gradient regularity for minimizers of functionals under $p$-$q$ subquadratic growth},
     journal = {Bollettino della Unione matematica italiana},
     pages = {571--586},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {3},
     year = {2001},
     zbl = {1177.49057},
     mrnumber = {450957},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a1/}
}
TY  - JOUR
AU  - Leonetti, F.
AU  - Mascolo, E.
AU  - Siepe, F.
TI  - Gradient regularity for minimizers of functionals under $p$-$q$ subquadratic growth
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 571
EP  - 586
VL  - 4B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a1/
LA  - en
ID  - BUMI_2001_8_4B_3_a1
ER  - 
%0 Journal Article
%A Leonetti, F.
%A Mascolo, E.
%A Siepe, F.
%T Gradient regularity for minimizers of functionals under $p$-$q$ subquadratic growth
%J Bollettino della Unione matematica italiana
%D 2001
%P 571-586
%V 4B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a1/
%G en
%F BUMI_2001_8_4B_3_a1
Leonetti, F.; Mascolo, E.; Siepe, F. Gradient regularity for minimizers of functionals under $p$-$q$ subquadratic growth. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 3, pp. 571-586. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a1/

[A] R. A. Adams, Sobolev spaces, Academic Press, New York, 1975. | MR | Zbl

[AF] E. Acerbi-N. Fusco, Regularity for minimizers of non-quadratic functionals. The case $1 < p < 2$, Journ. of Math. Anal. and Applications, 140 (1989), 115-135. | MR | Zbl

[BL] T. Bhattacharya-F. Leonetti, A new Poincaré inequality and its applications to the regularity of minimizers of integral functionals with nonstandard growth, Nonlinear Analysis TMA, vol. 17, 9 (1991), 833-839. | MR | Zbl

[BMS] L. Boccardo-P. Marcellini-C. Sbordone, $L^\infty$-regularity for variational problems with sharp non standard growth conditions, Boll. U.M.I. (7) 4-A (1990), 219-225. | MR | Zbl

[Ch] H. J. Choe, Interior behavior of minimizers for certain functionals with non standard growth conditions, Nonlinear Analysis TMA, 19 (1992), 933-945. | MR | Zbl

[CF] A. Cianchi A.-N. Fusco, Gradient regularity for minimizers under general growth conditions, J. reine angew. Math., 507 (1999), 15-36. | MR | Zbl

[DM] A. Dall'Aglio-E. Mascolo, Regularity for a class of non linear elliptic systems with non standard growth conditions, To appear.

[ELM1] L. Esposito-F. Leonetti-G. Mingione, Regularity for minimizers of functionals with $p$-$q$ growth, NoDEA Nonlinear Differential Equations Appl., 6 (1999), 133-148. | MR | Zbl

[ELM2] L. Esposito-F. Leonetti-G. Mingione, Higher integrability for minimizers of integral functionals with $(p, q)$ growth, J. Differential Equations, 157 (1999), 414-438. | MR | Zbl

[FS] N. Fusco-C. Sbordone, Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions, Comm. on Pure and Appl. Math., 43 (1990), 673-683. | MR | Zbl

[G1] M. Giaquinta, Multiple integrals in the calculus of variations and non linear elliptic systems, Annals of Math. Studies, 105 (1983), Princeton Univ. Press. | MR | Zbl

[G2] M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math., 59 (1987), 245-248. | MR | Zbl

[Gi] E. Giusti, Metodi diretti nel calcolo delle variazioni, U.M.I. (1994). | MR

[H] M. C. Hong, Some remarks on the minimizers of variational integrals with non standard growth conditions, Boll. U.M.I., 6-A (1992), 91-101. | MR | Zbl

[Li] G. Lieberman, The natural generalization of the natural growth conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), 311-361. | MR | Zbl

[M1] P. Marcellini, Un example de solution discontinue d'un probléme variationel dans le cas scalaire, Preprint Ist. «U. Dini», Firenze (1987).

[M2] P. Marcellini, Regularity of minimizers of integrals in the calculus of variations with non standard growth conditions, Arch. Rat. Mech. and Analysis, 105 (1989), 267-284. | MR | Zbl

[M3] P. Marcellini, Regularity and existence of solutions of elliptic equations with $p$, $q$-growth conditions, J. Diff. Equat., 90 (1991), 1-30. | MR | Zbl

[M4] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa, Cl. sci., 23 (1996), 1-25. | fulltext mini-dml | MR | Zbl