Simple modules over CC-groups and monolithic just non-CC-groups
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 2, pp. 381-390.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In questo lavoro studiamo i non CC-gruppi $G$ monolitici con tutti i quozienti propri CC-gruppi, che hanno sottogruppi abeliani normali non banali.
@article{BUMI_2001_8_4B_2_a5,
     author = {Kurdachenko, L. A. and Otal, J.},
     title = {Simple modules over {CC-groups} and monolithic just {non-CC-groups}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {381--390},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {2},
     year = {2001},
     zbl = {1076.20027},
     mrnumber = {165019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a5/}
}
TY  - JOUR
AU  - Kurdachenko, L. A.
AU  - Otal, J.
TI  - Simple modules over CC-groups and monolithic just non-CC-groups
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 381
EP  - 390
VL  - 4B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a5/
LA  - en
ID  - BUMI_2001_8_4B_2_a5
ER  - 
%0 Journal Article
%A Kurdachenko, L. A.
%A Otal, J.
%T Simple modules over CC-groups and monolithic just non-CC-groups
%J Bollettino della Unione matematica italiana
%D 2001
%P 381-390
%V 4B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a5/
%G en
%F BUMI_2001_8_4B_2_a5
Kurdachenko, L. A.; Otal, J. Simple modules over CC-groups and monolithic just non-CC-groups. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 2, pp. 381-390. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a5/

[1] R. Baer, Irreducible groups of automorphisms of abelian groups, Pacific J. Math., 14 (1994), 385-406. | fulltext mini-dml | MR | Zbl

[2] K. Doerk-T. Hawkes, Finite soluble groups, de Gruyter, Berlin, 1992. | MR | Zbl

[3] S. Franciosi-F. De Giovanni, Soluble groups with many Chernikov quotients, Atti Ac. Naz. Lincei (8), 79 (1985), 12-24. | MR | Zbl

[4] S. Franciosi-F. De Giovanni-L. A. Kurdachenko, Groups whose proper quotients are FC-groups, J. Algebra, 186 (1996), 544-577. | MR | Zbl

[5] S. Franciosi-F. De Giovanni-M. J. Tomkinson, Groups with Chernikov conjugacy classes, J. Austral. Math. Soc. Ser A, 50 (1991), 1-14. | MR | Zbl

[6] J. R. J. Groves, Soluble groups with every proper quotient polycyclic, Illinois J. Math., 22 (1978), 90-95. | fulltext mini-dml | MR | Zbl

[7] P. Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc., 9 (1959), 595-622. | MR | Zbl

[8] B. Hartley-D. Mcdougall, Injective modules and soluble groups satisfying the minimal condition for normal subgroups, Bull. Austral. Math. Soc., 4 (1971), 113-135. | MR | Zbl

[9] L. A. Kurdachenko, Some classes of groups with the weak minimal and maximal conditions, Ukrainian Math. j., 42 (1990), 937-942. | MR | Zbl

[10] L. A. Kurdachenko-J. Otal, Groups whose proper factors have Chernikov conjugacy classes, to appear.

[11] T. Landolfi, On generalized central series of groups, Ricerche Mat., 44 (1995), 337-347. | MR | Zbl

[12] D. Mccarthy, Infinite groups whose proper quotients are finite, Comm. Pure Applied Math., 21 (1968), 545-562. | MR | Zbl

[13] D. Mccarthy, Infinite groups whose proper quotients are finite, Comm. Pure Applied Math., 23 (1970), 767-789. | MR | Zbl

[14] M. F. Newman, On a class of metabelian groups, Proc. London. Math. Soc., 10 (1960), 354-364. | MR | Zbl

[15] M. F. Newman, On a class of nilpotent groups, Proc. London. Math. Soc., 10 (1960), 365-375. | MR | Zbl

[16] A. D. Polovitsky, Groups with extremal classes of conjugate elements, Siberian Math. J., 5 (1964), 891-895. | MR

[17] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Ergebnisse der mathematik bands 62-63, Springer-Verlag, Berlin, 1972. | Zbl

[18] D. J. S. Robinson, The vanishing of certain homology and cohomology groups, J. Pure and Applied Algebra, 2 (1976), 145-167. | MR | Zbl

[19] D. J. S. Robinson-J. S. Wilson, Soluble groups with many polycyclic quotients, Proc. London Math. Soc. (3), 48 (1984), 193-229. | MR | Zbl

[20] D. J. S. Robinson-Z. Zhang, Groups whose proper quotients have finite derived group, J. Algebra, 118 (1988), 346-368. | MR | Zbl

[21] J. S. Wilson, Some properties of groups inherited by normal subgroups of finite index, Math. Z., 114 (1970), 19-21. | MR | Zbl

[22] J. S. Wilson, Groups with every proper quotient finite, Proc. Cambridge Phil. Soc., 69 (1971), 373-391. | MR | Zbl

[23] D. I. Zaitsev, On the existence of direct complements in groups with operators, Investigations in group theory, Math. Inst. Kiev (1976), 26-44. | MR | Zbl

[24] D. I. Zaitsev, Products of abelian groups, Algebra and Logic, 19 (1980), 94-106. | MR | Zbl