Processi di filtrazione in un mezzo poroso con interazioni fra il liquido e la matrice porosa
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 2, pp. 365-380.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A model of filtration in a multispecies porous medium accompanied by a strong interaction between the flow and the porous matrix is presented. The species removed by the flow are both fine particles and other substances which diffuse in the liquid. The accumulation of the migrating particles in proximity of the outflow surface gives rise to the formation of a compact layer with high hydraulic resistance. The corresponding mathematical model consists in a set of partial differential equations of hyperbolic and parabolic type. to be solved in a free domain: the free boundary is the surface separating the compact layer from the rest of the medium. Under specific assumptions, which are expressive from the physical point of view, a result of existence (globally in time) and uniqueness of the solution can be proved, by means of fixed point techniques. Finally, some qualitative aspects of the solution are examined.
@article{BUMI_2001_8_4B_2_a4,
     author = {Talamucci, F.},
     title = {Processi di filtrazione in un mezzo poroso con interazioni fra il liquido e la matrice porosa},
     journal = {Bollettino della Unione matematica italiana},
     pages = {365--380},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {2},
     year = {2001},
     zbl = {1177.76418},
     mrnumber = {1419338},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a4/}
}
TY  - JOUR
AU  - Talamucci, F.
TI  - Processi di filtrazione in un mezzo poroso con interazioni fra il liquido e la matrice porosa
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 365
EP  - 380
VL  - 4B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a4/
LA  - it
ID  - BUMI_2001_8_4B_2_a4
ER  - 
%0 Journal Article
%A Talamucci, F.
%T Processi di filtrazione in un mezzo poroso con interazioni fra il liquido e la matrice porosa
%J Bollettino della Unione matematica italiana
%D 2001
%P 365-380
%V 4B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a4/
%G it
%F BUMI_2001_8_4B_2_a4
Talamucci, F. Processi di filtrazione in un mezzo poroso con interazioni fra il liquido e la matrice porosa. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 2, pp. 365-380. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a4/

[1] A. Fasano, Some nonstandard one-dimensional filtration problems, The Bulletin of the Faculty of Education, Chiba University, 44, 1996 | Zbl

[2] A. Fasano-M. Primicerio, Mathematical models for filtration through porous media interacting with the flow, in Nonlinear Mathematical problems in Industry, I, M. Kawarada, N. Kenmochi, N. Yanagihara eds., Math. Sci. & Appl., 1, pp. 61-85, Gakkotosho, Tokyo. | Zbl

[3] A. Fasano-M. Primicerio, Flows through saturated mass exchanging porous media under high pressure gradients, Proc. of Calculus of Variations, Applications and Computations, C. Bandle et al. eds. - Pitman Res. Notes Math. Series 326, 1994. | MR | Zbl

[4] A. Fasano-F. Talamucci, A comprehensive mathematical model for a multi-species flow through ground coffee, SIAM J. Math. Anal. Vol. 31, No. 2 (1999), 251-273. | MR | Zbl

[5] O. A. Ladyženskaja-V. A. Solonnikov-N. N. Ural'Ceva, Linear and quasilinear equations of parabolic type, Transl. of Math. Monographs, vol. 23, American Mathematical Society. | MR | Zbl

[6] M. Petracco, Espresso coffee brewing dynamics: development of mathematical and computational models, 15éme Colloque Scient. Internat. sur le Café, Associat. Scientif. Internat. du Café, Paris (1993).

[7] F. Talamucci, Analysis of coupled heat-mass transport in freezing saturated soils, Surveys on Mathematics for Industry, vol. 7, Springer-Verlag (1997), pp. 93-139. | MR | Zbl

[8] F. Talamucci, Flow through a porous medium with mass removal and diffusion, Nonlinear Differential Equations and Applications, 5 (1998), 427-444. | MR | Zbl