On lower semicontinuity in the calculus of variations
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 2, pp. 345-364.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Vengono studiate proprietà di semicontinuità per integrali multipli $$u\in W^{k, 1} (\Omega; \mathbb{R}^{d})\mapsto \int_{\Omega} f(x, u(x), \ldots \nabla^{k}u(x)) \, dx $$ quando $f$ soddisfa a condizioni di semicontinuità nelle variabili $(x, u, \ldots, \nabla^{k-1}u(x) )$ e può non essere soggetta a ipotesi di coercitività, e le successioni ammissibili in $W^{k, 1} (\Omega; \mathbb{R}^{d})$ convergono fortemente in $W^{k-1, 1} (\Omega; \mathbb{R}^{d})$.
@article{BUMI_2001_8_4B_2_a3,
     author = {Leoni, Giovanni},
     title = {On lower semicontinuity in the calculus of variations},
     journal = {Bollettino della Unione matematica italiana},
     pages = {345--364},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {2},
     year = {2001},
     zbl = {1072.49011},
     mrnumber = {1385074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a3/}
}
TY  - JOUR
AU  - Leoni, Giovanni
TI  - On lower semicontinuity in the calculus of variations
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 345
EP  - 364
VL  - 4B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a3/
LA  - en
ID  - BUMI_2001_8_4B_2_a3
ER  - 
%0 Journal Article
%A Leoni, Giovanni
%T On lower semicontinuity in the calculus of variations
%J Bollettino della Unione matematica italiana
%D 2001
%P 345-364
%V 4B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a3/
%G en
%F BUMI_2001_8_4B_2_a3
Leoni, Giovanni. On lower semicontinuity in the calculus of variations. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 2, pp. 345-364. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a3/

[1] E. Acerbi-G. Dal Maso, New lower semicontinuity results for polyconvex integrals case, Cal. Var., 2 (1994), 329-372. | MR | Zbl

[2] E. Acerbi-N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rat. Mech. Anal., 86 (1984), 125-145. | MR | Zbl

[3] S. Agmon-A. Douglis-L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math., 12 (1959), 623-727. | MR | Zbl

[4] M. Amar-V. De Cicco, Relaxation of quasi-convex integrals of arbitrary order, Proc. Roy. Soc. Edin., 124 (1994), 927-946. | MR | Zbl

[5] G. Alberti-C. Mantegazza, A note on the theory of SBV functions, Boll. Un. Mat. Ital. B, 11 (1997), 375-382. | MR | Zbl

[6] L. Ambrosio, New lower semicontinuity results for integral functionals, Rend. Accad. Naz. Sci. XL, 11 (1987), 1-42. | MR | Zbl

[7] L. Ambrosio, A compactness theorem for a special class of functions of bounded variation, Boll. Un. Mat. Ital., 3B 7 (1989), 857-881. | MR | Zbl

[8] L. Ambrosio, Existence theory for a new class, Arch. Rat. Mech. Anal., 111 (1990), 291-322. | MR | Zbl

[9] L. Ambrosio, On the lower semicontinuity of quasi-convex integrals in SBV, Nonlinear Anal., 23 (1994), 405-425. | MR | Zbl

[10] L. Ambrosio-G. Dal Maso, On the relaxation in $BV(\Omega; \mathbb{R}^m)$ of quasi-convex integrals, J. Funct. Anal., 109 (1992), 76-97. | Zbl

[11] L. Ambrosio-N. Fusco-D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Mathematical Monographs, Oxford University Press, 2000. | MR | Zbl

[12] L. Ambrosio-S. Mortola-V. M. Tortorelli, Functional with linear growth defined on vector-valued BV functions, J. Math. Pures et Appl., 70 (1991), 269-332. | MR | Zbl

[13] J. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., 63 (1977), 337-403. | MR | Zbl

[14] J. Ball-J. Currie-P. Olver, Null lagrangians, weak continuity, and variational problems of arbitrary order, J. Funct. Anal., 41 (1981), 315-328. | MR | Zbl

[15] J. M. Ball-F. Murat, Remarks on Chacon's biting lemma, Proc. AMS, 107 (1989), 655-663. | MR | Zbl

[16] L. Boccardo-D. Giachetti-J. I. Diaz-F. Murat, Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms, J. Diff. Eq., 106 (1993), 215-237. | MR | Zbl

[17] G. Bouchitté, I. Fonseca - J. Malý, Relaxation of multiple integrals below the growth exponent, Proc. Royal Soc. Edin., 128A (1998), 463-479. | MR | Zbl

[18] G. Bouchitté-I. Fonseca-L. Mascarenhas, A global method for relaxation, Arch. Rat. Mech. Anal., 145 (1998), 51-98. | MR | Zbl

[19] A. Braides, Approximation of free-discontinuity problems, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1998. | MR | Zbl

[20] A. Braides-A. Defranceschi, Homogenization of multiple integrals, Oxford Lecture Series in Mathematics and its Applications, 12, The Clarendon Press, Oxford University Press, New York, 1998. | MR | Zbl

[21] A. Braides-I. Fonseca-G. Leoni, A-quasiconvexity: relaxation and homogenization, to appear in COCV. | fulltext mini-dml | Zbl

[22] M. Carbone L.-R. De Arcangelis, Further results on $\Gamma$-convergence and lower semicontinuity of integral functionals depending on vector-valued functions, Richerche Mat., 39 (1990), 99-129. | MR | Zbl

[23] M. Carriero-A. Leaci-F. Tomarelli, Special bounded hessian and elastic-plastic plate, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 16 (1992), 223-258. | MR | Zbl

[24] M. Carriero-A. Leaci-F. Tomarelli, Strong minimizers of Blake & Zisserman functional, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), 257-285. | fulltext mini-dml | Zbl

[25] M. Carriero-A. Leaci-F. Tomarelli, A second order model in image segmentation: Blake & Zisserman functional, Progr. Nonlinear Differential Equations Appl., 25, Birkhäuser, 25 (1996), 57-72. | Zbl

[26] P. Celada-G. Dal Maso, Further remarks on the lower semicontinuity of polyconvex integrals, Ann. Inst. Henri Poincaré, Ann. Non Lin., 11 (1994), 661-691. | fulltext mini-dml | MR | Zbl

[27] R. Černý-J. Malý, Counterexample to lower semicontinuity in Calculus of Variations, to appear in Math. Z. | MR | Zbl

[28] R. Choksi-I. Fonseca, Bulk and interfacial energy densities for structured deformations of continua, Arch. Rat. Mech. Anal., 138 (1997), 37-103. | MR | Zbl

[29] B. Dacorogna, Quasiconvexity and relaxation of nonconvex problems in the calculus of variations, J. Funct. Anal., 46 (1982), 102-118. | MR | Zbl

[30] B. Dacorogna, Direct methods in the calculus of variations, Springer-Verlag, New York, 1989. | MR | Zbl

[31] B. Dacorogna-P. Marcellini, Semicontinuité pour des intégrandes polyconvexes sans continuité des determinants, C. R. Acad. Sci. Paris Sér. I Math., 311, 6 (1990), 393-396. | MR | Zbl

[32] G. Dal Maso, Integral representation on $BV(\Omega)$ of $\Gamma$-limits of variational integrals, Manuscripta Math., 30 (1980), 387-416. | MR | Zbl

[33] G. Dal Maso-C. Sbordone, Weak lower semicontinuity of polyconvex integrals: a borderline case, Math. Z., 218 (1995), 603-609. | MR | Zbl

[34] V. De Cicco, A lower semicontinuity result for functionals defined on $BV(\Omega)$, Ricerche di Mat., 39 (1990), 293-325. | MR | Zbl

[35] V. De Cicco, Lower semicontinuity for certain integral functionals on $BV(\Omega)$, Boll. U.M.I., 5-B (1991), 291-313. | MR | Zbl

[36] E. De Giorgi-L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 82 (1988), 199-210. | MR | Zbl

[37] E. De Giorgi-G. Buttazzo-G. Dal Maso, On the lower semicontinuity of certain integral functions, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend., 74 (1983), 274-282. | MR | Zbl

[38] E. De Giorgi-M. Carriero-A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rat. Mech. Anal., 108 (1989), 195-218. | MR | Zbl

[39] G. Del Piero-D. R. Owen, Structured deformations of continua, Arch. Rat. Mech. Anal., 124 (1993), 99-155. | MR | Zbl

[40] F. Demengel, Fonctions á hessien borné, Ann. Inst. Fourier (Grenoble), 34 (1984), 155-190. | fulltext mini-dml | MR | Zbl

[41] F. Demengel, Compactness theorems for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity, Arch. Rat. Mech. Anal., 105 (1989), 123-161. | MR | Zbl

[42] G. Eisen, A counterexample for some lower semicontinuity results, Math. Z., 162 (1978), 241-243. | MR | Zbl

[43] I. Ekeland I.-R. Temam, Convex analysis and variational problems, North-Holland Publishing Company (1976). | MR | Zbl

[44] L. C. Evans-R. F. Gariepy, Lecture Notes on Measure Theory and Fine Properties of Functions, Studies in Advanced Math., CRC Press, 1992. | MR | Zbl

[45] I. Fonseca, The lower quasiconvex envelope of the stored energy function for an elastic crystal, J. Math. Pures et Appl., 67 (1988), 175-195. | MR | Zbl

[46] I. Fonseca-G. Leoni, On lower semicontinuity and relaxation, to appear in the Proc. Royal Soc. Edin. | MR | Zbl

[47] I. Fonseca-G. Leoni, Some remarks on lower semicontinuity and relaxation, to appear in Indiana Univ. Math. J. | MR | Zbl

[48] I. Fonseca-G. Leoni, J. Malý - R. Paroni, A note on Meyers' Theorem in $W^{k,1}$, to appear. | MR | Zbl

[49] I. Fonseca-J. Malý, Relaxation of multiple integrals below the growth exponent, Ann. Inst. H. Poincaré, Analyse non Linéaire, 14 (1997), 308-338. | fulltext mini-dml | MR | Zbl

[50] I. Fonseca-J. Malý, Weak convergence of minors, to appear.

[51] I. Fonseca-P. Marcellini, Relaxation of multiple integrals in subcritical Sobolev spaces, J. Geom. Anal., 7 (1997), 57-81. | MR | Zbl

[52] I. Fonseca-S. Müller, Quasi-convex integrands and lower semicontinuity in $L^1$, SIAM J. Math. Anal., 23 (1992), 1081-1098. | MR | Zbl

[53] I. Fonseca-S. Müller, Relaxation of quasiconvex functionals in $BV(\Omega, \mathbb{R}^p)$ for integrands $f(x, u, \nabla u)$, Arch. Rat. Mech. Anal., 123 (1993), 1-49. | MR | Zbl

[54] I. Fonseca I.-S. Müller, A-quasiconvexity, lower semicontinuity and Young measures, SIAM J. Math. Anal., 30 (1999), 1355-1390. | MR | Zbl

[55] N. Fusco, Dualità e semicontinuità per integrali del tipo dell'area, Rend. Accad. Sci. Fis. Mat., IV. Ser., 46 (1979), 81-90. | Zbl

[56] N. Fusco, Quasiconvessità e semicontinuità per integrali multipli di ordine superiore, Ricerche Mat., 29 (1980), 307-323. | Zbl

[57] N. Fusco-J. E. Hutchinson, A direct proof for lower semicontinuity of polyconvex functionals, Manuscripta Math., 85 (1995), 35-50. | MR | Zbl

[58] W. Gangbo, On the weak lower semicontinuity of energies with polyconvex integrands, J. Math. Pures et Appl., 73 (1994), 455-469. | MR | Zbl

[59] M. Guidorzi-L. Poggiolini, Lower semicontinuity for quasiconvex integrals of higher order, NoDEA, 6 (1999), 227-246. | MR | Zbl

[60] J. Kristensen, Lower semicontinuity in spaces of weakly differentiable functions, Math. Ann., 313 (1999), 653-710. | MR | Zbl

[61] C. Larsen, Quasiconvexification in $W^p$ and optimal jump microstructure in BV relaxation, SIAM J. Math. Anal., 29 (1998), 823-848. | MR | Zbl

[62] F. C. Liu, A Luzin type property of Sobolev functions, Indiana Univ. Math. J., 26 (1977), 645-651. | MR | Zbl

[63] J. Malý, Weak lower semicontinuity of polyconvex integrals, Proc. Royal Soc. Edin., 123A (1993), 681-691. | MR | Zbl

[64] J. Malý, Lower semicontinuity of quasiconvex integrals, Manuscripta Math., 85 (1994), 419-428. | MR | Zbl

[65] P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals quasiconvex integrals, Manuscripta Math., 51 (1985), 1-28. | MR | Zbl

[66] P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré, Analyse non Linéaire, 3 (1986), 391-409. | fulltext mini-dml | MR | Zbl

[67] P. Marcellini - C. Sbordone, Semicontinuity problems in the calculus of variations, Nonlinear Analysis, 4 (1980), 241-257. | MR | Zbl

[68] N. Meyers, Quasi-convexity - lower semi-continuity of multiple variational integrals of any order, Trans. Amer. Math. Soc., 119 (1965), 125-149. | MR | Zbl

[69] C. B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math., 2 (1952), 25-53. | fulltext mini-dml | MR | Zbl

[70] C. B. Morrey, Multiple integrals in the Calculus of Variations, Springer, Berlin, 1966. | MR | Zbl

[71] D. R. Owen - R. Paroni, Second-order structured deformations, accepted by Arch. Rat. Mech. Anal. | MR | Zbl

[72] J. Serrin, On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc., 161 (1961), 139-167. | MR | Zbl

[73] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. | MR | Zbl

[74] M. Struwe, Variational methods, Springer, Berlin, 2000. | MR | Zbl

[75] T. Temam, Problémes mathématiques en plasticité, Gauthier-Villars, Paris, 1983. | MR | Zbl

[76] C. Trombetti, On lower semicontinuity and relaxation properties of certain classes of variational integrals, Rend. Accad. Naz. Sci. XL., 21 (1997), 25-51. | MR

[77] W. P. Ziemer, Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Springer-Verlag, New York, 1989. | MR | Zbl