Metodi variazionali e topologici nello studio delle equazioni di Schrödinger nonlineari agli stati stazionari
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 2, pp. 319-343.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In the present paper we survey some recents results concerning existence of semiclassical standing waves solutions for nonlinear Schrödinger equations. Furthermore, from Maxwell's equations we derive a nonlinear Schrödinger equation which represents a model of propagation of an electromagnetic field in optical waveguides.
@article{BUMI_2001_8_4B_2_a2,
     author = {Cingolani, Silvia},
     title = {Metodi variazionali e topologici nello studio delle equazioni di {Schr\"odinger} nonlineari agli stati stazionari},
     journal = {Bollettino della Unione matematica italiana},
     pages = {319--343},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {2},
     year = {2001},
     zbl = {1182.58006},
     mrnumber = {921893},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a2/}
}
TY  - JOUR
AU  - Cingolani, Silvia
TI  - Metodi variazionali e topologici nello studio delle equazioni di Schrödinger nonlineari agli stati stazionari
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 319
EP  - 343
VL  - 4B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a2/
LA  - it
ID  - BUMI_2001_8_4B_2_a2
ER  - 
%0 Journal Article
%A Cingolani, Silvia
%T Metodi variazionali e topologici nello studio delle equazioni di Schrödinger nonlineari agli stati stazionari
%J Bollettino della Unione matematica italiana
%D 2001
%P 319-343
%V 4B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a2/
%G it
%F BUMI_2001_8_4B_2_a2
Cingolani, Silvia. Metodi variazionali e topologici nello studio delle equazioni di Schrödinger nonlineari agli stati stazionari. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 2, pp. 319-343. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a2/

[A] N. N. Akhmediev, Novel class of nonlinear surface waves, Asymmetric modes in a symmetric layered structure, Sov. Phys. JEPT, 56 (1982), 299-303.

[An] S. Angenent, The Shadowing Lemma for Elliptic PDE, Dynamics of Infinite Dimensional Systems (S. N. Chow and J. K. Hale eds.), F37 (1987). | MR | Zbl

[AAG] A. Ambrosetti-D. Arcoya-J. L. Gámez, Asymmetric bound states of differential equations in Nonlinear Optics, Rend. Sem. Mat. Padova, 100 (1998), 231-247. | fulltext mini-dml | MR | Zbl

[AB] A. Ambrosetti-M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approach, Ann. Inst. H. Poincaré, Anal. Nonlin., 15 (1998), 233-252. | fulltext mini-dml | MR | Zbl

[ABC] A. Ambrosetti-M. Badiale-S. Cingolani, Semiclassical states of nonlinear Schrödinger equations with bounded potentials, Rendiconti dell'Accademia Nazionale dei Lincei, ser. IX, 7 (1996), 155-160. | MR | Zbl

[ABC1] A. Ambrosetti-M. Badiale-S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Rat. Mech. Anal., 140 (1997), 285-300. | MR | Zbl

[ACZE] A. Ambrosetti-V. Coti Zelati-I. Ekeland, Symmetry breaking in Hamiltonian systems, J. Diff. Eq., 67 (1987), 165-184. | MR | Zbl

[ACG] D. Arcoya-S. Cingolani-J. L. Gámez, Asymmetric modes in symmetric nonlinear optical waveguides, SIAM Math. Anal., 30 (1999), 1391-1400. | MR | Zbl

[BW] T. Bartsch-Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^N$, Comm. Part. Diff. Eq., 20 (1995), 1725-1741. | MR | Zbl

[BC] V. Benci-G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rat. Mech. Anal., 114 (1991), 79-93. | MR | Zbl

[BC1] V. Benci-G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var., 2 (1994), 29-48. | MR | Zbl

[BCP] V. Benci-G. Cerami-D. Passaseo, On the number of the positive solutions of some nonlinear elliptic problems, Nonlinear Analysis, A tribute in honour of G. Prodi, Quaderno Scuola Norm. Sup., Pisa 1991, 93-107. | MR | Zbl

[BL] H. Berestycki-P. L. Lions, Nonlinear scalar field equations, I - Existence of a ground state, Arch. Rat. Mech. Anal., 82 (1983), 313-375. | MR | Zbl

[BN] H. Brezis-L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. | MR | Zbl

[C] S. Cingolani, On a perturbed semilinear elliptic equation in $\mathbb{R}^N$, Comm. Applied Anal., 3 (1999), 49-57. | MR | Zbl

[C1] S. Cingolani, Positive solutions to perturbed elliptic problems in $\mathbb{R}^N$ involving critical Sobolev exponent, to appear on Nonlinear Analysis, T.M.A. | MR | Zbl

[CG] S. Cingolani-J. L. Gámez, Asymmetric positive solutions for a symmetric nonlinear problem in $\mathbb{R}^N$, Calc. Var. PDE, 11 (2000), 97-117. | MR | Zbl

[CL] S. Cingolani-M. Lazzo, Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations, Top. Meth. Nonlinear Anal., 10 (1997), 1-13. | MR | Zbl

[CL1] S. Cingolani-M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Diff. Eq., 160 (2000), 118-138. | MR | Zbl

[CN] S. Cingolani-M. Nolasco, Multi-peak periodic semiclassical states of nonlinear Schrödinger equations, Proc. Royal Soc. Edin., 128 A (1998), 1249-1260. | MR | Zbl

[Co] J. M. Coron, Topologie et cas limite des injections de Sobolev, C.R.A.S., Ser. I, 299 (1984), 209-212. | MR | Zbl

[CZE] V. Coti Zelati-M. J. Esteban, Symmetry breaking and multiple solutions for a Neumann problem in an exterior domain, Proc. Royal Soc. Edin., 116A (1990), 327-339. | MR | Zbl

[CZR] V. Coti Zelati-P. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727. | MR | Zbl

[CZR1] V. Coti Zelati-P. Rabinowitz, Homoclinics type solutions for a semilinear elliptic PDE on $\mathbb{R}^N$, Comm. Pure Appl. Math., 45 (1992), 1217-1269. | MR | Zbl

[FW] A. Floer-A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408. | MR | Zbl

[DF] M. Del Pino-P. L. Felmer, Local mountain pass for semilinear elliptic problems in unbounded domains, Calc. Var. PDE, 4 (1996), 121-137. | MR | Zbl

[DF1] M. Del Pino-P. L. Felmer, Semiclassical states of nonlinear Schrödinger equations, J. Func. Anal., 149 (1997), 245-265. | MR | Zbl

[DF2] M. Del Pino-P. L. Felmer, Multi-peak bound states of nonlinear Schrödinger equations, Ann. Inst. H. Poincarè, Anal. Nonlin., 15 (1998), 127-149. | fulltext mini-dml | MR | Zbl

[E] M. J. Esteban, Nonsymmetric ground states of symmetric variational problems, Comm. Pure Appl. Math., 44 (1991), 259-274. | MR | Zbl

[GNN] B. Gidas-W. M. Ni-L. Niremberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^N$, Math. Analysis Appl., Part A 7 (1981), 369-402. | Zbl

[GSS] M. Grillakis-J. Shatah-W. Strauss, Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., 74 (1987), 160-197. | MR | Zbl

[G] M. Grossi, Some recent results on a class of nonlinear Schrödinger equations, to appear on Math. Z. | MR | Zbl

[Gu] C. Gui, Existence of multi-bumps solutions for nonlinear Schrödinger equations via variational methods, Comm. Part. Diff. Eq., 21 (1996), 787-820. | MR | Zbl

[JS] O. John-C. Stuart, Guidance properties of a cylindrical defocusing waveguide, Comm. Math. Univ. Carolinae, 35 (1994), 653-673. | fulltext mini-dml | MR | Zbl

[K] M. K. Kwong, Uniqueness of $\Delta u - u + u^p = 0$ in $\mathbb{R}^N$, Arch. Rat. Mech. Anal., 105 (1989), 243-266. | MR | Zbl

[L] Y. Y. Li, On a singularly perturbed elliptic equation, Adv. Diff. Eq., 2 (1997), 955-980. | MR | Zbl

[Li] Y. Li, Remarks on a semilinear elliptic equation on $\mathbb{R}^n$, J. Diff. Eqs., 74 (1988), 34-49. | MR | Zbl

[O] Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger with potential in the class $(V)_a$, Comm. Part. Diff. Eq., 13 (1988), 1499-1519. | MR | Zbl

[O1] Y. G. Oh, On positive multi-bump states of nonlinear Schrödinger equation under multiple well potentials, Comm. Math. Phys., 131 (1990), 223-253. | fulltext mini-dml | MR | Zbl

[R] P. Rabinnowitz, On a class of nonlinear Schrödinger equations, ZAMP, 43 (1992), 27-42. | MR

[Ru] H. Ruppen, Multiple TE-Modes for planar self-focusing wave guides, Ann. Mat. Pura Appl., (IV) CLXXII (1997), 323-377. | MR | Zbl

[Se] E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209 (1992), 27-42. | MR | Zbl

[S] C. Stuart, Self-trapping of an electromagnetic field and bifurcation from the essential spectrum, Arch. Rational Mech. Anal., 113 (1991), 65-96. | MR | Zbl

[S1] C. Stuart, Guidance properties of nonlinear planar waveguided, Arch. Rational Mech. Anal., 125 (1993), 145-200. | MR | Zbl

[S2] C. Stuart, The principle branch of solutions of a nonlinear elliptic eigenvalue problem in $\mathbb{R}^N$, J. Diff. Eqs., 124 (1996), 279-301. | MR | Zbl

[W] X. Wang, On a concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 223-243. | fulltext mini-dml | MR | Zbl

[WZ] X. Wang-B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., 28 (1997), 633-655. | MR | Zbl