Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2001_8_4B_2_a13, author = {De Falco, Maria}, title = {Groups with many nearly normal subgroups}, journal = {Bollettino della Unione matematica italiana}, pages = {531--540}, publisher = {mathdoc}, volume = {Ser. 8, 4B}, number = {2}, year = {2001}, zbl = {1147.20302}, mrnumber = {327909}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a13/} }
De Falco, Maria. Groups with many nearly normal subgroups. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 2, pp. 531-540. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a13/
[1] Radical groups with finite abelian sugroup rank, Illinois J. Math., 16 (1972), 533-580. | fulltext mini-dml | MR | Zbl
- ,[2] Groups with restricted non-normal subgroups, Math. Z., 176 (1981), 199-221. | MR | Zbl
- ,[3] Groups satisfying the minimal condition on certain non-normal subgroups, Proceedings of Groups Korea 1994, de Gruyter, Berlin (1995), 107-118. | MR | Zbl
- ,[4] On groups with many almost normal subgroups, Ann. Mat. Pura Appl. (4), 169 (1995), 35-65. | MR | Zbl
- - ,[5] Groups with polycyclic non-normal subgroups, Algebra Colloq., 7 (2000), 33-42. | MR | Zbl
- - ,[6] Groups satisfyng the maximal condition on non-(nearly normal) subgroups, Ricerche Mat., to appear. | MR | Zbl
,[7] Groups with a nilpotent-by-finite triple factorization, Arch. Math. (Basel), 51 (1988), 393-400. | MR | Zbl
,[8] Groups with finite classes of conjugate subgroups, Math. Z., 63 (1955), 76-96. | MR | Zbl
,[9] On soluble Min-by-Max groups, Math. Ann., 186 (1970), 282-296. | MR | Zbl
,[10] Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin (1972). | Zbl
,[11] Metahamiltonian groups, Ural Gos. Univ. Mat. Zap., 5 (1966), 101-106. | MR | Zbl
- ,[12] Metahamiltonian groups II, Ural Gos. Univ. Mat. Zap., 6 (1968), 52-58. | MR
- ,[13] Metahamiltonian groups III, Ural Gos. Univ. Mat. Zap., 7 (1969/70), 195-199. | MR | Zbl
- ,[14] Groups whose proper quotients have finite derived subgroups, J. Algebra, 118 (1988), 346-368. | MR | Zbl
- ,[15] On the minimality problem for locally finite groups, Algebra and Logic, 9 (1970), 137-151. | Zbl
,[16] Modules over nilpotent groups of finite rank, Algebra and Logic, 24 (1985), 412-436. | MR | Zbl
- - ,