Groups with many nearly normal subgroups
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 2, pp. 531-540.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Un sottogruppo $H$ di un gruppo $G$ si dice nearly normal se ha indice finito nella sua chiusura normale $H^{G}$. In questa nota si caratterizzano i gruppi in cui ogni sottogruppo che non sia nearly normal soddisfa una fissata condizione finitaria $\chi$ per diverse scelte naturali della proprietà $\chi$.
@article{BUMI_2001_8_4B_2_a13,
     author = {De Falco, Maria},
     title = {Groups with many nearly normal subgroups},
     journal = {Bollettino della Unione matematica italiana},
     pages = {531--540},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {2},
     year = {2001},
     zbl = {1147.20302},
     mrnumber = {327909},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a13/}
}
TY  - JOUR
AU  - De Falco, Maria
TI  - Groups with many nearly normal subgroups
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 531
EP  - 540
VL  - 4B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a13/
LA  - en
ID  - BUMI_2001_8_4B_2_a13
ER  - 
%0 Journal Article
%A De Falco, Maria
%T Groups with many nearly normal subgroups
%J Bollettino della Unione matematica italiana
%D 2001
%P 531-540
%V 4B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a13/
%G en
%F BUMI_2001_8_4B_2_a13
De Falco, Maria. Groups with many nearly normal subgroups. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 2, pp. 531-540. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a13/

[1] R. Baer-H. Heineken, Radical groups with finite abelian sugroup rank, Illinois J. Math., 16 (1972), 533-580. | fulltext mini-dml | MR | Zbl

[2] B. Bruno-R. E. Phillips, Groups with restricted non-normal subgroups, Math. Z., 176 (1981), 199-221. | MR | Zbl

[3] S. Franciosi-F. De Giovanni, Groups satisfying the minimal condition on certain non-normal subgroups, Proceedings of Groups Korea 1994, de Gruyter, Berlin (1995), 107-118. | MR | Zbl

[4] S. Franciosi-F. De Giovanni-L. A. Kurdachenko, On groups with many almost normal subgroups, Ann. Mat. Pura Appl. (4), 169 (1995), 35-65. | MR | Zbl

[5] S. Franciosi-F. De Giovanni-M. L. Newell, Groups with polycyclic non-normal subgroups, Algebra Colloq., 7 (2000), 33-42. | MR | Zbl

[6] A. Galoppo, Groups satisfyng the maximal condition on non-(nearly normal) subgroups, Ricerche Mat., to appear. | MR | Zbl

[7] N. Halbritter, Groups with a nilpotent-by-finite triple factorization, Arch. Math. (Basel), 51 (1988), 393-400. | MR | Zbl

[8] B. H. Neumann, Groups with finite classes of conjugate subgroups, Math. Z., 63 (1955), 76-96. | MR | Zbl

[9] M. L. Newell, On soluble Min-by-Max groups, Math. Ann., 186 (1970), 282-296. | MR | Zbl

[10] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin (1972). | Zbl

[11] G. M. Romalis-N. F. Sesekin, Metahamiltonian groups, Ural Gos. Univ. Mat. Zap., 5 (1966), 101-106. | MR | Zbl

[12] G. M. Romalis-N. F. Sesekin, Metahamiltonian groups II, Ural Gos. Univ. Mat. Zap., 6 (1968), 52-58. | MR

[13] G. M. Romalis-N. F. Sesekin, Metahamiltonian groups III, Ural Gos. Univ. Mat. Zap., 7 (1969/70), 195-199. | MR | Zbl

[14] D. J. S. Robinson-Z. Zhang, Groups whose proper quotients have finite derived subgroups, J. Algebra, 118 (1988), 346-368. | MR | Zbl

[15] V. S. Šunkov, On the minimality problem for locally finite groups, Algebra and Logic, 9 (1970), 137-151. | Zbl

[16] D. I. Zaicev-L. A. Kurdachenko-A. V. Tushev, Modules over nilpotent groups of finite rank, Algebra and Logic, 24 (1985), 412-436. | MR | Zbl