Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2001_8_4B_2_a10, author = {Philippin, G. A. and Vernier-Piro, S.}, title = {Decay estimates for solutions of a class of parabolic problems arising in filtration through porous media}, journal = {Bollettino della Unione matematica italiana}, pages = {473--481}, publisher = {mathdoc}, volume = {Ser. 8, 4B}, number = {2}, year = {2001}, zbl = {1177.35044}, mrnumber = {814920}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a10/} }
TY - JOUR AU - Philippin, G. A. AU - Vernier-Piro, S. TI - Decay estimates for solutions of a class of parabolic problems arising in filtration through porous media JO - Bollettino della Unione matematica italiana PY - 2001 SP - 473 EP - 481 VL - 4B IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a10/ LA - en ID - BUMI_2001_8_4B_2_a10 ER -
%0 Journal Article %A Philippin, G. A. %A Vernier-Piro, S. %T Decay estimates for solutions of a class of parabolic problems arising in filtration through porous media %J Bollettino della Unione matematica italiana %D 2001 %P 473-481 %V 4B %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a10/ %G en %F BUMI_2001_8_4B_2_a10
Philippin, G. A.; Vernier-Piro, S. Decay estimates for solutions of a class of parabolic problems arising in filtration through porous media. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 2, pp. 473-481. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a10/
[1] Quasilinear evolution equations and parabolic systems, Trans. Amer. Math. Soc., 293 (1986), 191-227. | MR | Zbl
,[2] The porous medium equation, Lecture Notes in Math., 1224 (1985), 1-46. | MR | Zbl
,[3] Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, 28 (1977), 473-486. | MR | Zbl
,[4] Remarks on the maximum principle for parabolic equations and its applications, Pacific J. of Math., 8 (1958), 201-211. | fulltext mini-dml | MR | Zbl
,[5] Halbgruppen und semilineare Anfangs-randwert-probleme, Manuscripta Math., 12 (1974), 121-152. | MR | Zbl
,[6] A strong maximum principle for parabolic equations, Comm. Pure and Appl. Math., 6 (1953), 167-177. | MR | Zbl
,[7] Decay bounds for solutions of second order parabolic problems and their derivatives, Math. Models and Meth. in Appl. Sci., 5 (1995), 95-110. | MR | Zbl
- ,[8] Decay bounds in quasilinear parabolic problems; in Nonlinear Problems in Applied Mathematics, Ed. by T. S. Angell, L. Pamela Cook, R. E. Kleinman and W. E. Olmstead, SIAM (1996), 206-216. | Zbl
- ,[9] Explicit exponential decay bounds, in quasilinear parabolic problems, J. of Inequalities and Applications, 3 (1999), 1-23. | MR | Zbl
- ,[10] Explicit decay bounds in some quasilinear onedimensional parabolic problems, Math. Models and Methods in Appl. Sci., 22 (1999), 101-109. | MR | Zbl
- ,[11] Maximum Principles in Differential Equations, Springer Verlag, Berlin (1984). | MR | Zbl
- ,[12] The physics of flow through porous media, Univ. of Toronto Press, Toronto (1974). | Zbl
,[13] Maximum principles and their applications, Academic Press Math. in Sci. and Engineering, 157 (1981). | MR | Zbl
,[14] Instability, Nonexistence and Weighted Energy Methods in Fluid Dynamics and Related Theories, Pitman Research Notes in Mathematics, 74 (1982). | MR | Zbl
,