Le equazioni di evoluzione dei continui ferromagnetici
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 31-44.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This expository paper is meant to be a faithful account the invited lecture I gave in Naples on September 14, 1999, during the 16th Congress of U.M.I., the Italian Mathematical Union. In Section 2, I consider the Gilbert equation, the parabolic equation that rules the evolution of the magnetization vector in a rigid ferromagnet. Among the issues I here discuss are the relations of the Gilbert equation to the harmonic map equation and its heat flow, the existence of global-in-time weak solutions, and some conjectures on the possible evolutions of singular solutions. Section 3 consists of an abridged presentation of dynamical micromagnetics, a general mathematical model for the dynamics of ferromagnetic bodies undergoing arbitrarily large deformations. In particular, I show how a generalized Gilbert equation can be arrived at, and I briefly discuss equilibria and dissipation mechanisms.
@article{BUMI_2001_8_4B_1_a9,
     author = {Podio-Guidugli, P.},
     title = {Le equazioni di evoluzione dei continui ferromagnetici},
     journal = {Bollettino della Unione matematica italiana},
     pages = {31--44},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {1},
     year = {2001},
     zbl = {1039.74014},
     mrnumber = {1167422},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a9/}
}
TY  - JOUR
AU  - Podio-Guidugli, P.
TI  - Le equazioni di evoluzione dei continui ferromagnetici
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 31
EP  - 44
VL  - 4B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a9/
LA  - it
ID  - BUMI_2001_8_4B_1_a9
ER  - 
%0 Journal Article
%A Podio-Guidugli, P.
%T Le equazioni di evoluzione dei continui ferromagnetici
%J Bollettino della Unione matematica italiana
%D 2001
%P 31-44
%V 4B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a9/
%G it
%F BUMI_2001_8_4B_1_a9
Podio-Guidugli, P. Le equazioni di evoluzione dei continui ferromagnetici. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 31-44. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a9/

[1] F. Alouges-A. Soyeur, On global weak solutions for Landau-Lifshitz equations:existence and nonuniqueness, Nonlinear Anal. Theory, Meth. Appl., 18 (1992), 1071. | MR | Zbl

[2] V. G. Baryakthar-B. A. Ivanov-A. L. Sukstanskii-E. Yu. Melikhov, Soliton relaxation in magnets, Phys. Rev. B, 56 (1997), 619.

[3] M. Bertsch-R. Dal Passo-R. Van Der Hout, Nonuniqueness for the heat flow ofharmonic maps on the disk, Quad. I.A.C.-C.N.R. 9/1999. | Zbl

[4] M. Bertsch-P. Podio-Guidugli-V. Valente, On the dynamics of deformable ferromagnets. I. Global weak solutions for soft ferromagnets at rest. I.A.C. Quad.1/1999, in corso di stampa su Annali Mat. Pura Appl. | Zbl

[5] F. Bethuel-J.-M. Coron-J. M. Ghidaglia-A. Soyeur, Heat flows and relaxedenergies for harmonic maps, In Nonlinear Diffusion Equations and their Equilibrium States, Gregynog, Birkhäuser (1990). | Zbl

[6] H. Brezis-J.-M. Coron-E. H. Lieb, Harmonic maps with defects, Comm. Math.Phys., 107 (1986), 649. | fulltext mini-dml | MR | Zbl

[7] W. F. Brown, MAGNETOELASTIC INTERACTIONS, SPRINGER-VERLAG (1966).

[8] W. F. Brown, MICROMAGNETICS, KRIEGER, 1978.

[9] K.-C. Chang-W.-Y. Ding-R. Ye, Finite-time blow-up of the heat flow of harmonicmaps from surfaces, J. Differential Geometry, 36 (1992), 507. | fulltext mini-dml | MR | Zbl

[10] Y. Chen-M. Struwe, Existence and partial regularity results for the heat flow forharmonic maps, Math. Z., 201 (1989), 83. | MR | Zbl

[11] J.-M. Coron, Nonuniqueness for the heat flow of harmonic maps. Ann. Inst. Henri Poincaré, 7 (1990), 335. | fulltext mini-dml | MR | Zbl

[12] A. De Simone-P. Podio-Guidugli, Inertial and self interactions in structured continua: liquid crystals and magnetostrictive solids, MECCANICA, 30 (1995), 629. | MR | Zbl

[13] A. De Simone-P. Podio-Guidugli, On the continuum theory of deformable ferromagnetic solids, Arch. Rational Mech. Anal., 136 (1996), 201. | MR | Zbl

[14] A. De Simone-P. Podio-Guidugli, Pointwise balances and the construction of stress fields in dielectrics, Math. Models & Methods Appl. Sci., 7 (1997), 477. | Zbl

[15] A. Freire, Uniqueness for the harmonic map flow from surfaces to general targets, Comment. Math. Helv., 70 (1995), 310. | MR | Zbl

[16] T. L. Gilbert, A Lagrangian formulation of the gyromagnetic equation of the magnetization field, Phys. Rev., 100 (1955) 1243.

[17] R. M. Hardt, Singularities of harmonic maps, Bull. Amer. Math. Soc., 34 (1997), 15. | MR | Zbl

[18] M.-C. Hong, Some new examples for nonuniqueness of the evolution problem of harmonic maps, Comm. Anal. Geom., 6 (1998), 779. | MR | Zbl

[19] L. Landau-E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjet., 8 (1935), 153. Ristampato alle pp. 101-114 di «Collected Papers of L.D. Landau», D.ter Haar Ed., Pergamon Press (1965). | Zbl

[20] P. Podio-Guidugli, Inertia and invariance, Ann. Mat. Pura Appl., 172 (1997),103-124. | MR | Zbl

[21] P. Podio-Guidugli, On dissipation mechanisms in micromagnetics, inviato per la pubbl. (2000).

[22] P. Podio-Guidugli-V. Valente, Existence of global weak solutions to a modified Landau-Lifshitz equation, in preparazione (1999).

[23] M. Struwe, Geometric evolution problems of «Nonlinear Partial Differential Equations in Differential Geometry», IAS Park City Math. Ser., Vol. 2, Am. Math. Soc. (1996), 257. | MR | Zbl

[24] A. Visintin, On Landau-Lifshitz' equations for ferromagnetism, Japan J. Appl. Math., 2 (1985), 69. | MR | Zbl

[25] A. Visintin, Modified Landau-Lifshitz equation for ferromagnetism, Physica B, 233 (1997), 365. | Zbl