Sugli ideali di Borel
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 207-237.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this note we study some algebraic properties of Borel Ideals in the ring of polynomials over an effective field of characteristic zero by using a suitable partial order relation defined on the set of terms of each degree. In particular, in the three variable case, we characterize all the 0-dimensional Borel ideals corresponding to an admissible $h$-vector and their minimal free resolutions.
@article{BUMI_2001_8_4B_1_a6,
     author = {Marinari, Maria Grazia},
     title = {Sugli ideali di {Borel}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {207--237},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {1},
     year = {2001},
     zbl = {1035.13009},
     mrnumber = {2632095},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a6/}
}
TY  - JOUR
AU  - Marinari, Maria Grazia
TI  - Sugli ideali di Borel
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 207
EP  - 237
VL  - 4B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a6/
LA  - it
ID  - BUMI_2001_8_4B_1_a6
ER  - 
%0 Journal Article
%A Marinari, Maria Grazia
%T Sugli ideali di Borel
%J Bollettino della Unione matematica italiana
%D 2001
%P 207-237
%V 4B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a6/
%G it
%F BUMI_2001_8_4B_1_a6
Marinari, Maria Grazia. Sugli ideali di Borel. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 207-237. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a6/

[1] D. Bayer, The Division Algorithm and the Hilbert Scheme, Ph.D. Thesis, Harvard, 1981. | MR

[2] A. M. Bigatti, Aspetti combinatorici e computazionali dell'algebra commutativa, Ph.D. Thesis, Università di Torino, 1995.

[3] A. M. Bigatti-A. V. Geramita-J. Migliore, Geometric consequences of extremal behaviour in a theorem of Macaulay, T.A.M.S., 346 (1994), 203-235. | MR | Zbl

[4] W. Bruns-J. Herzog, Cohen-Macaulay rings, Cambridge Press, 1993. | MR | Zbl

[5] A. Capani-G. Niesi-L. Robbiano, CoCoA, a system for doing computation in Commutative Algebra, 1995, available via anonymous ftp from cocoa.dima.unige.it.

[6] T. Deery, Rev-lex Segment Ideals and minimal Betti numbers, Queen's Papers in Pure and Applied Mathematics. The Curves Seminar, vol. X, 1996. | MR

[7] D. Eisenbud, Commutative algebra with a view towards algebraic geometry, Springer-Verlag, 1995. | MR | Zbl

[8] S. Eliahou-M. Kervaire, Minimal resolution of some monomial ideals, J. Algebra, 129 (1990), 1-25. | MR | Zbl

[9] J. C. Faugere-P. Gianni-D. Lazard-T. Mora, Efficient computation of zero-dimensional Groebner bases by change of ordering, J. Symbolic Comp., 16 (1993), 329-344. | MR | Zbl

[10] G. Floystad, A property deducible from the generic initial ideal, to appear in J. of Pure and Applied Algebra. | fulltext mini-dml | MR | Zbl

[11] G. Floystad-M. Green, The information encoded in initial ideals, preprint. | MR | Zbl

[12] A. Galligo, A propos du Théorem de Préparation de Weierstrass, L.N. Math., 409 (1974), 543-579. | MR | Zbl

[13] M. Green, Generic initial ideals, Notes from summer School on Commutative Algebra, vol. 2, Barcelona July 1996, 5-85. | Zbl

[14] H. Hullet, Maximum Betti numbers of homogeneous ideals with a given Hilbert function, Comm. Algebra, 21 (7) (1993), 2335-2350. | MR | Zbl

[15] M. G. Marinari-T. Mora-H. M. Möller, Groebner bases of ideals defined by functionals with an application to ideals of projective points, A. A. E. C. C. vol. 4, n. 2 (1992), 103-145. | MR | Zbl

[16] M. G. Marinari-L. Ramella, Some properties of Borel ideals, accettato a MEGA 1998. | MR | Zbl

[17] L. Ramella, Punti e ideali iniziali generici, Seminario D.I.M.A. Genova, 1998.

[18] G. Valla, Problems and results on Hilbert functions of graded algebras, Notes from summer School on Commutative Algebra, vol. 1, Barcelona July 1996, 145-211. | Zbl