Soluzioni di viscosità
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 1-29.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This is the expanded text of a lecture about viscosity solutions of degenerate elliptic equations delivered at the XVI Congresso UMI. The aim of the paper is to review some fundamental results of the theory as developed in the last twenty years and to point out some of its recent developments and applications.
@article{BUMI_2001_8_4B_1_a5,
     author = {Capuzzo Dolcetta, Italo},
     title = {Soluzioni di viscosit\`a},
     journal = {Bollettino della Unione matematica italiana},
     pages = {1--29},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {1},
     year = {2001},
     zbl = {1036.49032},
     mrnumber = {1760538},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a5/}
}
TY  - JOUR
AU  - Capuzzo Dolcetta, Italo
TI  - Soluzioni di viscosità
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 1
EP  - 29
VL  - 4B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a5/
LA  - it
ID  - BUMI_2001_8_4B_1_a5
ER  - 
%0 Journal Article
%A Capuzzo Dolcetta, Italo
%T Soluzioni di viscosità
%J Bollettino della Unione matematica italiana
%D 2001
%P 1-29
%V 4B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a5/
%G it
%F BUMI_2001_8_4B_1_a5
Capuzzo Dolcetta, Italo. Soluzioni di viscosità. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 1-29. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a5/

[1] P. Albano-P. Cannarsa, Structural properties of singularities of semiconcave functions, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) Vol. XXVIII (1999). | fulltext mini-dml | MR | Zbl

[2] O. Alvarez, Homogenization of Hamilton-Jacobi equations in perforated sets, in corso di stampa su J. Differential Equations. | MR | Zbl

[3] O. Alvarez-M. Bardi, Viscosity solution methods for singular perturbations in deterministic and stochastic control, preprint (2000). | MR | Zbl

[4] M. Arisawa, Ergodic problem for the Hamilton-Jacobi-Bellman equation I, Ann. IHP Anal. Non. Lin., 14 (1997). | fulltext mini-dml | MR | Zbl

[5] M. Arisawa-P. L. Lions, On ergodic stochastic control, Comm. Partial Differential Equations, 23 (1998). | MR | Zbl

[6] M. Arisawa-I. Capuzzo Dolcetta-M. Falcone, lavoro in preparazione.

[7] F. Bagagiolo-M. Bardi, Singular perturbation of a finite horizon problem with state-space constraints, SIAM J. Control Optim., 36 (1998). | MR | Zbl

[8] F. Bagagiolo-M. Bardi-I. Capuzzo Dolcetta, A viscosity solutions approach to some asymptotic problems in optimal control, in Partial differential equations methods in control and shape analysis, G. Da Prato & J. P. Zolesio eds., Marcel Dekker, New York (1997). | Zbl

[9] M. Bardi-I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi Equations, Birkhäuser, Boston (1997). | MR | Zbl

[10] M. Bardi-F. Da Lio, Propagation of maxima and strong maximum principle for viscosity solutions of degenerate elliptic equations I: convex operators, in corso di stampa su Nonlinear Analysis TMA. | Zbl

[11] M. Bardi-F. Da Lio, On the strong maximum principle for fully nonlinear degenerate elliptic equations, Archiv der Mathematik, 73 (1999). | MR | Zbl

[12] M. Bardi-P. Goatin, Invariant sets for controlled degenerate diffusions: a viscosity solutions approach, in Stochastic Analysis, Control, Optimization and Applications: a Volume in Honor of W. H. Fleming, W. M. McEneaney, G. G. Yin and Q. Zhang eds, Birkhäuser, Boston (1999). | MR | Zbl

[13] M. Bardi-S. Bottacin, On the Dirichlet problem for nonlinear degenerate elliptic equations and applications to optimal control, in corso di stampa su Rend. Sem. Mat. Univ. Pol. Torino. | MR | Zbl

[14] M. Bardi-M. G. Crandall-L. C. Evans-H. M. Soner-P. E. Souganidis, Viscosity Solutions and Applications, I. Capuzzo Dolcetta & P. L. Lions eds., Lecture Notes in Mathematics 1660, Springer (1997).

[15] M. Bardi-L. C. Evans, On Hopf's formula for solutions of Hamilton-Jacobi equations, Nonlinear Analysis, 8 (1984). | Zbl

[16] M. Bardi-M. Falcone-P. Soravia, Numerical methods for pursuit-evasion games via viscosity solutions, in Stochastic and differential games: theory and numerical methods, M. Bardi, T. Parthasarathy & T. E. S. Raghavan eds., Birkhäuser, Boston (1999). | Zbl

[17] G. Barles, Solutions de Viscositè des Equations de Hamilton-Jacobi, Springer, Paris (1994). | MR | Zbl

[18] G. Barles-B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems, RAIRO Model. Math. Anal. Numer., 16 (1991). | MR | Zbl

[19] G. Barles-P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Analysis, 4 (1991). | MR | Zbl

[20] L. Caffarelli-X. Cabre, Fully Nonlinear Elliptic Equations, AMS Colloquium Publications, 43, Providence (1995). | MR | Zbl

[21] F. Camilli-A. Siconolfi, Maximal subsolutions for a class of degenerate Hamilton-Jacobi equations, Indiana Univ. Math. J., 48 (1999). | MR | Zbl

[22] P. Cannarsa-C. Sinestrari, Convexity properties of the minimum time function, Calc. Var. Partial Differential Equations, 3 (1995). | MR | Zbl

[23] I. Capuzzo Dolcetta-A. Cutrì, On the Liouville property for sublaplacians, Ann. Sc. Norm. Sup. Pisa (4), 25 (1997), 1-2. | fulltext mini-dml | MR | Zbl

[24] I. Capuzzo Dolcetta-J. L. Menaldi, On the deterministic optimal stopping time problem in the ergodic case, in Theory and Applications of Nonlinear Control Systems, C. I. Byrnes & A. Lindquist eds., North-Holland (1986).

[25] I. Capuzzo Dolcetta-P. L. Lions, Hamilton-Jacobi equations with state constraints, Trans. Amer. Math. Soc., 318 (1990). | MR | Zbl

[26] I. Capuzzo Dolcetta-H. Ishii, On the rate of convergence in homogenization of Hamilton-Jacobi equations, Proc. EQUADIFF99, Berlin (in corso di stampa). | Zbl

[27] I. Capuzzo Dolcetta, On a discrete approximation of the Bellman equation of deterministic control theory, Appl. Math. Optim., 10 (1983). | MR | Zbl

[28] I. Capuzzo Dolcetta-H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory, Appl. Math. Optim., 11 (1984). | MR | Zbl

[29] F. Cattè-P. L. Lions-J. M. Morel-T. Coll, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal., Vol., 29, No. 1 (1992). | MR | Zbl

[30] X. Chen-Y. Giga-S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Diff. Geom., 33 (1991). | fulltext mini-dml | MR | Zbl

[31] M. G. Crandall-H. Ishii-P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin of the American Mathematical Society, Volume 27, Number 1 (1992). | fulltext mini-dml | MR | Zbl

[32] M. G. Crandall-P. L. Lions, Condition d'unicitè pour les solutions généralisées des équations de Hamilton-Jacobi du premier ordre, C. R. Acad. Sci. Paris Sèr. I Math., 292 (1981). | MR | Zbl

[33] M. G. Crandall-P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983). | MR | Zbl

[34] M. G. Crandall-L. C. Evans-P. L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282 (1984). | MR | Zbl

[35] M. G. Crandall-P. L. Lions, Hamilton-Jacobi equations in infinite dimensions, Part I: Uniqueness of viscosity solutions, J. Funct. Anal., 62 (1985). | MR | Zbl

[36] M. G. Crandall-P. L. Lions, Some remarks on the existence and uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations, Illinois J. Math., 31 (1987). | fulltext mini-dml | MR | Zbl

[37] M.G. Crandall-P. L. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp., 43 (1984). | MR | Zbl

[38] A. Cutrì-F. Leoni, On the Liouville property for fully nonlinear equations, in corso di stampa su Ann. Inst. H. Poincarè Analyse Nonlineaire. | fulltext mini-dml | Zbl

[39] B. Dacorogna-P. Marcellini, Implicit Partial Differential Equations, Birkhäuser, Boston (1999). | MR | Zbl

[40] L. C. Evans-J. Spruck, Motion of level sets by mean curvature I, J. Diff. Geom., 33 (1991). | fulltext mini-dml | MR | Zbl

[41] L. C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math., XXV (1982). | MR | Zbl

[42] L. C. Evans, Periodic homogenization of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992). | MR | Zbl

[43] L. C. Evans-H. Ishii, A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. H. Poincarè Analyse Nonlineaire, Vol. 2, n. 1 (1985). | fulltext mini-dml | MR | Zbl

[44] L. C. Evans-D. Gomes, Effective hamiltonians and averaging for hamiltonian dynamics, preprint. | Zbl

[45] G. Fichera, On a unified theory of boundary value problems for elliptic-parabolic equations of second order, in Boundary problems in differential equations, University of Wisconsin Press, Madison (1960). | MR | Zbl

[46] W. H. Fleming-M. H. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, New York (1993). | MR | Zbl

[47] K. Horie-H. Ishii, Homogenization of Hamilton-Jacobi equations on domains with small scale periodic structure, Indiana Univ. Math. J., 47 (1998). | MR | Zbl

[48] L. Hörmander, Notions of Convexity, Birkhäuser, Boston (1994). | MR | Zbl

[49] H. Ishii, On uniqueness and existence of solutions of fully nonlinear second order elliptic PDE's, Comm. Pure Appl. Math., 42 (1989). | MR | Zbl

[50] H. Ishii, Viscosity solutions of nonlinear partial differential equations, Sugaku Expositions, Volume 9, Number 2 (1996). | MR | Zbl

[51] H. Ishii, Perron's method for Hamilton-Jacobi equations, Duke Math. J., 55 (1987). | fulltext mini-dml | MR | Zbl

[52] R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Anal., 101 (1988). | MR | Zbl

[53] R. Jensen, Uniqueness of viscosity solutions of 2nd order elliptic partial differential equations, preprint.

[54] R. Jensen-P. L. Lions, Some asymptotic problems in fully nonlinear elliptic equations and stochastic control, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4), 11 (1984). | fulltext mini-dml | MR | Zbl

[55] N. V. Krylov-M. V. Safonov, Certain properties of solutions of parabolic equations with measurable coeefficients, Izvestia Akad. Nauk. SSSR, 40 (1980). | Zbl

[56] N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Holder Spaces, American Mathematical Society, Providence (1996). | MR | Zbl

[57] S. N. Kruzkov, Generalized solutions of Hamilton-Jacobi equations of eikonal type I, Math. USSR Sbornik, 27 (1975). | Zbl

[58] P. L. Lions, On Mathematical Finance, Conferenza al XVI Congresso UMI, Napoli (1999). | fulltext bdim | Zbl

[59] P. L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. Part 1: The dynamic programming principle and applications; Part 2: Viscosity solutions and uniqueness, Comm. Partial Differential Equations, 8 (1983). | Zbl

[60] P. L. Lions, Generalized Solutions of Hamilton-Jacobi equations, Pitman, Boston (1982) | MR | Zbl

[61] P. L. Lions-P. E. Souganidis, Fully nonlinear stochastic partial differential equations: nonsmooth equations and applications, C. R. Acad. Sci. Paris, Serie I, 327 (1998). | MR | Zbl

[62] P. L. Lions-G. Papanicolau-S. R. S. Varadhan, Homogenization of Hamilton-Jacobi equations, non pubblicato (1986).

[63] O. Oleinik-E. V. Radkevic, Second order equations with non negative characteristic form, American Mathematical Society, Providence (1973).

[64] S. Osher-J. A. Sethian, Fronts propagating with curvature depending speed: algorithms based on Hamilton-Jacobi formulation, J. Comp. Phys., 79 (1988). | MR | Zbl

[65] P. E. Souganidis, Approximation schemes for viscosity solutions of Hamilton-Jacobi equations, J. Differential Equations, 57 (1985). | MR | Zbl

[66] P. E. Souganidis, Front propagation: theory and applications in Viscosity Solutions and Applications, I. Capuzzo Dolcetta & P. L. Lions eds., Lecture Notes in Mathematics 1660, Springer (1997). | Zbl

[67] P. Cannarsa, Soluzioni di viscosità, in Equazioni, Enciclopedia Italiana, Appendice 2000, Roma (2000), pp. 591-592.