On the onset of convection in porous media: temperature depending viscosity
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 143-156.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Si considera l'insorgere della convezione naturale in un mezzo poroso (Horton-Rogers-Lapwood problem), assumendo che la viscosità del fluido dipenda dalla temperatura. Adoperando il metodo diretto di Liapunov, si effettua l'analisi della stabilitá non lineare della soluzione di conduzione per i modelli di Darcy e di Forchheimer.
@article{BUMI_2001_8_4B_1_a3,
     author = {Capone, F.},
     title = {On the onset of convection in porous media: temperature depending viscosity},
     journal = {Bollettino della Unione matematica italiana},
     pages = {143--156},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {1},
     year = {2001},
     zbl = {1177.76402},
     mrnumber = {1299152},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a3/}
}
TY  - JOUR
AU  - Capone, F.
TI  - On the onset of convection in porous media: temperature depending viscosity
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 143
EP  - 156
VL  - 4B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a3/
LA  - en
ID  - BUMI_2001_8_4B_1_a3
ER  - 
%0 Journal Article
%A Capone, F.
%T On the onset of convection in porous media: temperature depending viscosity
%J Bollettino della Unione matematica italiana
%D 2001
%P 143-156
%V 4B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a3/
%G en
%F BUMI_2001_8_4B_1_a3
Capone, F. On the onset of convection in porous media: temperature depending viscosity. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 143-156. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a3/

[1] G. I. Barenblatt-V. M. Entov-V. M. Ryzhik: Theory of fluid flows through natural rocks, Kluwer Academic Publishers (1990). | Zbl

[2] F. Capone-M. Gentile, Nonlinear stability analysis of convection for fluids with exponentially temperature-dependent viscosity, Acta Mechanica, 107 (1994), 53. | MR | Zbl

[3] F. Capone-M. Gentile, Nonlinear stability analysis of the Bénard problem for fluids with a convex nonincreasing temperature depending viscosity, Continuum Mech. Thermodyn., 7 (1995), 297-309. | MR | Zbl

[4] F. Capone-M. Gentile, On the influence of the Forchheimer term in convective instabilities in porous media for fluids with temperature depending viscosity, Rend. Circolo Mat. Palermo, Serie II, Suppl. 57 (1998), 91-95. | MR | Zbl

[5] F. Capone-S. Rionero, Temperature dependent viscosity and its influence on the onset of convetion in a porous medium, Rend. Acc. Sc. fis. mat. Napoli, vol. LXVI (1999), 159-172. | MR | Zbl

[6] S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, New York, Dover (1961). | MR | Zbl

[7] J. Flavin-S. Rionero, Qualitative estimates for partial differential equations. An introduction, Boca Raton, Florida: CRC Press (1996). | MR | Zbl

[8] D. D. Joseph-D. A. Nield-G. Papanicolau, Nonlinear equation governing flow in a saturated porous medium, Water Resources Res., 18, 1049-1052 and 19 (1982), 591.

[9] D. D. Joseph, Stability of fluid motions I-II, Springer Tracts in Natural Philosophy, vols. 27-28 (1976). | MR | Zbl

[10] D. A. Nield-A. Bejan, Convection in porous media, Berlin Heidelberg New York: Springer-Verlag (1992). | MR | Zbl

[11] Y. Qin-J. Chadam, Nonlinear convective stability in a porous medium, Studies In Appl. Math. (1996), 273-288. | MR | Zbl

[12] S. Rionero, Metodi variazionali per la stabilità asintotica in media in magnetoidrodinamica, Ann. Mat. Pura Appl., 78 (1968), 339-364. | MR | Zbl

[13] B. Straughan, The energy method, stability and nonlinear convection, Berlin Heidelberg New York Tokyo: Springer (1992). | MR | Zbl