Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2001_8_4B_1_a11, author = {Benettin, Giancarlo}, title = {Applicazioni del teorema di {Nekhoroshev} alla meccanica celeste}, journal = {Bollettino della Unione matematica italiana}, pages = {71--95}, publisher = {mathdoc}, volume = {Ser. 8, 4B}, number = {1}, year = {2001}, zbl = {1089.70008}, mrnumber = {1438264}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a11/} }
TY - JOUR AU - Benettin, Giancarlo TI - Applicazioni del teorema di Nekhoroshev alla meccanica celeste JO - Bollettino della Unione matematica italiana PY - 2001 SP - 71 EP - 95 VL - 4B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a11/ LA - it ID - BUMI_2001_8_4B_1_a11 ER -
Benettin, Giancarlo. Applicazioni del teorema di Nekhoroshev alla meccanica celeste. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 71-95. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a11/
[A] Cours de Méchanique Celeste (Gautier-Villars, Paris 1923). | Jbk 49.0665.04
,[BCG] A rigorous implementation of the Landau-Teller approximation for adiabatic invariants, Nonlinearity, 10 (1997), 479-505. | MR | Zbl
- - :[BCF] Regular and chaotic behaviour of rigid bodies in fast rotation: a numerical study, In corso di stesura.
- - ,[BF1] Fast rotations of the symmetric rigid body: a general study by Hamiltonian perturbation theory, Part I, Nonlinearity, 9 (1996), 137-186. | MR | Zbl
- ,[BF2] Classical «freezing» of plane rotations: a proof of the Boltzmann-Jeans Conjecture, Journ. Stat. Phys., 63 (1991), 737. | MR
- ,[BG] Stability of Motions near Resonances in Quasi Integrable Hamiltonian Systems, Journ. Stat. Phys., 44 (1986), 293. | MR | Zbl
- ,[BFG1] Fast rotations of the symmetric rigid body, a study by Hamiltonian perturbation theory. Part II, Gyroscopic rotations, Nonlinearity, 10 (1997), 1695-1717. | MR | Zbl
- - ,[BFG2] Nekhoroshev-stability of $L4$ and $L5$ in the spatial restricted three-body problem, Regular and Chaotic Dynamics, 3 (1998), 56-72. | MR | Zbl
- - ,[BFGG] An Extension of the Poincaré-Fermi Theorem on the Non-Existence of Invariant Manifolds in Nearly-Integrable Hamiltonian Systems, Nuovo Cimento B, 72 (1982), 137-148. | MR
- - - ,[BGG1] A Proof of Nekhoroshev Theorem for Nearly-Integrable Hamiltonian Systems, Celestial Mechanics, 37 (1985), 1-25. | MR | Zbl
- - ,[BGG2] Realization of Holonomic Constraints and Freezing of High Frequency Degrees of Freedom, in the Light of Classical Perturbation Theory. Part I, Comm. Math. Phys., 113 (1987), 87-103. | fulltext mini-dml | MR | Zbl
- - ,[BGG3] Realization of Holonomic Constraints and Freezing of High-Frequency Degrees of Freedom in the Light of Classical Perturbation Theory. Part II, Comm. Math. Phys., 121 (1989), 557-601. | fulltext mini-dml | MR | Zbl
- - ,[D] Free rotation of a rigid body studied in phase plane, Am. J. Phys., 55 (1967), 424.
,[F] The Euler-Poinsot top, a non-commutatively integrable system without global action-angle coordinates, J. Appl. Math. Phys., 47 (1996), 953-976. | MR | Zbl
,[FGB] Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems, Comm. Math. Phys., 197 (1998), 347-360. | MR | Zbl
- - ,[FL] Stability properties of the Riemann ellipsoids, preprint 2000. | fulltext mini-dml | MR | Zbl
- ,[Ga] Quasi-Integrable Mechanical Systems, in Critical phenomena, Random Systems, Gauge Theories, edito da K. Osterwalder and R. Stora, Les Houches, Session XLIII, 1984 (North-Holland, Amsterdam 1986). | MR | Zbl
,[GDFGS] Effective Stability for a Hamiltonian System near an Elliptic Equilibrium Point, with an Application to the Restricted three Body Problem, J. Diff. Eq., 77 (1989), 167-198. | MR | Zbl
- - - - ,[GFB] On the stability of elliptic equilibria, Math. Phys. Electronic Journal, Vol. 4, No. 1 (1998). | MR | Zbl
- - ,[GG] Rigorous estimates for the series expansions of Hamiltonian perturbation theory, Celestial Mech., 37 (1985), 95-112. | MR
[Gi] Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point, Ann. Inst. Henri Poincaré - Physique Thèorique, 48 (1988), 423-439. | fulltext mini-dml | MR | Zbl
,[GM] Construction of a Nekhoroshev like result for the asteroid belt dynamical system, Cel. Mech. & Dyn. Astr., 66 (1997), 255-292. | Zbl
- ,[Gu] Nekhoroshev stability of quasi-integrable degenerate Hamiltonian Systems, Regular and Chaotic Dynamics, 4 (1999), 78-102. | MR | Zbl
,[GM] Construction of a Nekhoroshev like result for the asteroid belt dynamical system, Cel. Mech. & Dyn. Astr., 66 (1997), 255-292. | Zbl
- ,[Lo] Canonical perturbation theory via simultaneous approximation, Russ. Math. Surv., 47 (1992), 57-133. | MR | Zbl
,[LN] Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos, 2 (1992), 495-499. | MR | Zbl
- ,[MG] The Nekhoroshev theorem and the Asteroid Belt dynamical system, Cel. Mech. & Dyn. Astr., 65 (1997), 107-136. | Zbl
- ,[Ne1] Behaviour of Hamiltonian systems close to integrability, Funct. Anal. Appl., 5 (1971), 338-339. (Funk. An. Ego Prilozheniya, 5 (1971), 82-83). | Zbl
,[Ne2] An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Usp. Mat. Nauk, 32:6 (1977), 5-66 (Russ. Math. Surv., 32:6 (1977), 1-65). | MR | Zbl
,[Ni] Nonlinear stability around an elliptic equilibrium point in an Hamiltonian system, Nonlinearity, 11 (1998), 1465-1479. | MR | Zbl
,[Po] Les Méthodes Nouvelles de la Méchanique Céleste, Vol. 1 (Gautier-Villars, Paris, 1892). | Jbk 30.0834.08
,[Pö] Nekhoroshev estimates for quasi-convex Hamiltonian Systems, Math. Z., 213 (1993), 187-216. | MR | Zbl
,