The boundedness of singular subvarieties of $\mathbf{P}^N$ not of a general type and with low codimension
Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 3, pp. 687-689.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Sia $X\subset \mathbf{P}^{N}$ una varietà irriducibile $n$-dimensionale localmente Cohen-Macaulay, $\mathbf{Q}$-Gorenstein e non di tipo generale; assumiamo $N=6$, $2n=N+2$ e $\text{dim} (\text{Sing} (X) )=2n-N$. In questo lavoro dimostriamo che $\text{deg} (X)\leq(N+1)^{N-n}$ e quindi che l'insieme di tutte queste varietà è parametrizzato da un insieme finito di varietà algebriche.
@article{BUMI_2000_8_3B_3_a6,
     author = {Ballico, E.},
     title = {The boundedness of singular subvarieties of $\mathbf{P}^N$ not of a general type and with low codimension},
     journal = {Bollettino della Unione matematica italiana},
     pages = {687--689},
     publisher = {mathdoc},
     volume = {Ser. 8, 3B},
     number = {3},
     year = {2000},
     zbl = {1026.14014},
     mrnumber = {732620},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a6/}
}
TY  - JOUR
AU  - Ballico, E.
TI  - The boundedness of singular subvarieties of $\mathbf{P}^N$ not of a general type and with low codimension
JO  - Bollettino della Unione matematica italiana
PY  - 2000
SP  - 687
EP  - 689
VL  - 3B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a6/
LA  - en
ID  - BUMI_2000_8_3B_3_a6
ER  - 
%0 Journal Article
%A Ballico, E.
%T The boundedness of singular subvarieties of $\mathbf{P}^N$ not of a general type and with low codimension
%J Bollettino della Unione matematica italiana
%D 2000
%P 687-689
%V 3B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a6/
%G en
%F BUMI_2000_8_3B_3_a6
Ballico, E. The boundedness of singular subvarieties of $\mathbf{P}^N$ not of a general type and with low codimension. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 3, pp. 687-689. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a6/

[B] A. Borel, Intersection Cohomology, Progress in Math., 50, Birkhäuser, 1984. | Zbl

[F] W. Fulton, Intersection Theory, Ergebnisse der Math. B., 2, Springer-Verlag, 1984. | MR | Zbl

[FL] W. Fulton-R. Lazarfeld, Connectivity and its applications in algebraic geometry, in: Algebraic Geometry, Proc. Chicago Circle, pp. 26-92, Lect. Notes in Math., 862, Springer-Verlag, 1980. | MR | Zbl

[H1] R. Hartshorne, Ample subvarieties of algebraic varieties, Lect. Notes in Math., 156, Springer-Verlag, 1970. | MR | Zbl

[H2] R. Hartshorne, On the De Rham cohomology of algebraic varieties, Publ. Math. IHES, 45 (1976), 5-99. | fulltext mini-dml | MR | Zbl

[HS] R. Hartshorne-R. Speiser, Local cohomological dimension in characteristic $p$, Ann. Math., 105 (1977), 45-79. | MR | Zbl

[O] A. Ogus, On the formal neighborhood of a subvariety of projective space, Amer. J. Math., 97 (1975), 1085-1107. | MR | Zbl

[S] M. Schneider, Boundedness of low-codimensional submanifolds of projective space, Int. J. Math., 3 (1992), 397-399. | MR | Zbl