Some problems for measures on non-standard algebraic structures
Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 3, pp. 673-686.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Nell'ultimo ventennio tutta una serie di lavori è stata rivolta allo studio delle misure su strutture algebriche più generali delle algebre di Boole, come i poset e i reticoli ortomodulari, le effect algebras, le BCK-algebras. La teoria così ottenuta interessa l'analisi funzionale, il calcolo delle probabilità e la topologia, più recentemente la teoria delle decisioni. Si presentano alcuni risultati relativi a misure su strutture algebriche non-standard analizzando, in particolare, gli aspetti topologici e geometrici che intervengono nei teoremi di decomposizione e prolungamento.
@article{BUMI_2000_8_3B_3_a5,
     author = {Graziano, Maria Gabriella},
     title = {Some problems for measures on non-standard algebraic structures},
     journal = {Bollettino della Unione matematica italiana},
     pages = {673--686},
     publisher = {mathdoc},
     volume = {Ser. 8, 3B},
     number = {3},
     year = {2000},
     zbl = {0991.28003},
     mrnumber = {1176064},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a5/}
}
TY  - JOUR
AU  - Graziano, Maria Gabriella
TI  - Some problems for measures on non-standard algebraic structures
JO  - Bollettino della Unione matematica italiana
PY  - 2000
SP  - 673
EP  - 686
VL  - 3B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a5/
LA  - en
ID  - BUMI_2000_8_3B_3_a5
ER  - 
%0 Journal Article
%A Graziano, Maria Gabriella
%T Some problems for measures on non-standard algebraic structures
%J Bollettino della Unione matematica italiana
%D 2000
%P 673-686
%V 3B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a5/
%G en
%F BUMI_2000_8_3B_3_a5
Graziano, Maria Gabriella. Some problems for measures on non-standard algebraic structures. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 3, pp. 673-686. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a5/

[1] A. Avallone-A. De Simone, Extensions of modular functions on orthomodular lattices, Italian Journal of Pure and Applied Mathematics (forthcoming). | Zbl

[2] G. Barbieri-H. Weber, A topological approach to the study of fuzzy measures, Proceedings of the international conference on Applied analisys held in Karlovassy, Samos, Greece (1996). | Zbl

[3] A. Basile-K. P. S. Bhaskara Rao-R. M. Shortt, Bounded common extensions of charges, Proc. Amer. Math. Soc., 121 (1994), 137-143. | MR | Zbl

[4] A. Basile-T. Traynor, Monotonely Cauchy locally solid topologies, Order, 7 (1991), 407-416. | MR | Zbl

[5] E. G. Beltrametti-G. Cassinelli, The logic of quantum mechanics, Addison-Wesley Publ. Company (1984). | MR | Zbl

[6] L. Beran, Orthomodular Lattices. Algebraic Approach, Academia, Praha (1984). | MR | Zbl

[7] G. Birkhoff-J. Von Neumann, The logic of quantum mechanics, Annals of Mathematics, 37, n. 44 (1936), 823-843. | MR | Zbl

[8] C. C. Chang, Algebraic analysis of many-valued logic, Trans. Amer. Math. Soc., 93 (1959), 74-80. | MR | Zbl

[9] A. B. D'Andrea-P. De Lucia, On the Lebesgue decomposition of a function relatively to a $p$-ideal of an orthomodular lattice, Math. Slovaca, 41 (1991), 423-430. | MR | Zbl

[10] E. D'Aniello, Extension problems for states on orthomodular posets, Preprint del Dip. Mat. e Appl. R. Caccioppoli, Università Federico II, Cuen, 36 (1996).

[11] E. D'Aniello-K. P. S. Bhaskara Rao-R. M. Shortt, A Stone space approach to the existence of bounded common extensions, Journal of Mathematical Analisys and Applications, 219 (1998), 442-454. | MR | Zbl

[12] E. D'Aniello-M. G. Graziano, A Hewitt-Yosida theorem for functions defined on minimal clans, Rend. Acc. Sc. fis. mat. Napoli, 62 (1995), 333-344. | MR | Zbl

[13] A. De Simone, Decomposition theorems in orthomodular posets: The problem of uniqueness, Proc. Amer. Math. Soc., 126 (1998), 2919-2926. | MR | Zbl

[14] A. De Simone-M. Navara, Yosida-Hewitt and Lebesgue decompositions of states on orthomodular posets, Preprint del Dip. Mat. e Appl. R. Caccioppoli, Università Federico II, Cuen, 40 (1997). | Zbl

[15] L. Drewnowski, Topological rings of sets, continuous set functions, integration I, II, III, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys., 20 (1972), 269-276, 277-286, 439-445. | MR | Zbl

[16] A. Dvurenskij-M. G. Graziano, Remarks on representations of minimal clans, Tatra Mount. Math. Publ., 15 (1998), 31-53. | MR | Zbl

[17] A. Dvurenskij-M. G. Graziano, Measures on Dedekind complete commutative BCK-algebras, Atti Sem. Mat. Fis. Università di Modena (forthcoming). | Zbl

[18] L. G. Epstein, A definition of uncertainty aversion, Review of Economic Studies, 66 (1999), 579-608. | MR | Zbl

[19] P. Ghirardato-M. Marinacci, Ambiguity made precise: A comparative foundation, Mimeo, Caltech and Universitá di Bologna, (Revised: November 1999) October 1997. | Zbl

[20] M. G. Graziano, Uniformities of Frechét-Nikodyn type on Vitali spaces, Semigroup Forum, 61 (2000), 1-26. | MR | Zbl

[21] M. G. Graziano, Decomposition of measures on Vitali spaces, Ricerche di matematica (forthcoming). | MR

[22] S. Gudder, Generalized measure theory, Foundations of Physics, 3, n.3 (1973). | MR

[23] Y. Imai-K. Iséky, On axiom systems of propositional calculus, Proc. Japan Acad., 42 (1996), 19-22. | MR | Zbl

[24] G. Kalmbach, Orthomodular lattices, Academic Press, London (1983). | MR | Zbl

[25] F. Kopka-F. Chovanec, $D$-posets, Math. Slovaca, 44 (1994), 21-34. | MR | Zbl

[26] Z. Lipecki, Conditional and simultaneous extensions of group-valued quasi-measures, Glas. Math., 19(39) (1984), 49-58. | MR | Zbl

[27] M. Navara-G. T. Ruttiman, A characterization of $\sigma$-state spaces of orthomodular lattices, Expositiones Math., 9 (1991), 275-284. | MR | Zbl

[28] J. Von Neumann, Mathematical foundation of quantum mechanics, Princeton University Press, Princeton (1955). | MR | Zbl

[29] D. Mundici, Interpretations of AF $C^{*}$-algebras in Lukasziewicz sentential calculus, J. Funct. Anal., 65 (1986), 15-63. | MR | Zbl

[30] P. Pták-S. Pulmannová, Orthomodular structures as quantum logics, Kluwer, Dordrecht, Boston, London (1991). | MR | Zbl

[31] S. Pulmannová, On connections among some orthomodular structures, Dem. Math., 30 (1997), 313-328. | MR | Zbl

[32] G. T. Ruttiman, Non-commutative measure theory, Habilitationschrift, Universitat Bern (1980).

[33] K. D. Schmidt, Jordan decomposition of generalized vector measures, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical 214 (1989). | MR | Zbl

[34] K. D. Shmidt-G. Waldschaks, Common extension of order bounded vector measures, in Measure Theory (Oberwalfach). Rend. Circ. Mat. Palermo, Ser. II 28, Suppl. (1990), 117-124. | MR | Zbl

[35] F. W. Shultz, A characterization of state spaces of orthomodular lattices, J. Comb. Theory 17 (1974), 317-328. | MR | Zbl

[36] T. Traynor, The Lebesgue decomposition for group valued set-functions, Trans. Amer. Math. Soc. 220 (1976), 307-319. | MR | Zbl

[37] V. S. Varadarajan, Geometry of quantum theory, Springer Verlag (1985). | MR | Zbl

[38] H. Weber, Uniform Lattice I: A generalization of topological Riesz spaces and topological Boolean rings; Uniform Lattice II: Order continuity and exhaustivity, Ann. Mat. Pura Appl., 160 (1991), 347-370; 165 (1993), 133-158. | Zbl

[39] H. Weber, Group and vector-valued $s$-bounded contents, in «Measure Theory», Springer Lecture Notes in Mathematics 1089 (1984), 181-198. | MR | Zbl

[40] H. Weber, Lattice uniformities and modular functions on orthomodular lattices, Order 12 (1995), 295-305. | MR | Zbl