Metodi di simmetrizzazione nelle equazioni alle derivate parziali
Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 3, pp. 601-634.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A survey of the fundamental ideas which are the base of the socalled symmetrization method; a priori estimates in partial differential equations.
@article{BUMI_2000_8_3B_3_a2,
     author = {Trombetti, Guido},
     title = {Metodi di simmetrizzazione nelle equazioni alle derivate parziali},
     journal = {Bollettino della Unione matematica italiana},
     pages = {601--634},
     publisher = {mathdoc},
     volume = {Ser. 8, 3B},
     number = {3},
     year = {2000},
     zbl = {0963.35006},
     mrnumber = {960950},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a2/}
}
TY  - JOUR
AU  - Trombetti, Guido
TI  - Metodi di simmetrizzazione nelle equazioni alle derivate parziali
JO  - Bollettino della Unione matematica italiana
PY  - 2000
SP  - 601
EP  - 634
VL  - 3B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a2/
LA  - it
ID  - BUMI_2000_8_3B_3_a2
ER  - 
%0 Journal Article
%A Trombetti, Guido
%T Metodi di simmetrizzazione nelle equazioni alle derivate parziali
%J Bollettino della Unione matematica italiana
%D 2000
%P 601-634
%V 3B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a2/
%G it
%F BUMI_2000_8_3B_3_a2
Trombetti, Guido. Metodi di simmetrizzazione nelle equazioni alle derivate parziali. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 3, pp. 601-634. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a2/

[1] D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math., 128, 1988. | MR | Zbl

[2] J. A. Aguilar-I. Peral, An a priori estimate for the $N$-Laplacian, C. R. Acad. Sci. Paris, Sér. I Math., t. 319, 1994. | MR | Zbl

[3] A. Alberico-V. Ferone, Regularity properties of solutions of elliptic equations in $\mathbb{R}^{2}$ in limit cases, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (9) 6, 1995. | MR | Zbl

[4] F. J. Jr Almgren-E. H. Lieb, Symmetric decreasing rearrangement is sometimes continous, J. Amer. Math. Soc., vol. 2, no. 4, 1989. | MR | Zbl

[5] F. J. Jr Almgren-E. H. Lieb, Symmetric decreasing rearrangement can be discontinuous, Bull. Amer. Math. Soc. (N. S.), 20, no. 2, 1989. | fulltext mini-dml | MR | Zbl

[6] A. Alvino, Formule di maggiorazione e regolarizzazione per soluzioni di equazioni ellittiche del secondo ordine in un caso limite, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 62, 1977. | Zbl

[7] A. Alvino, Sulla diseguaglianza di Sobolev in spazi di Lorentz, Boll. U.M.I. (5), 14-A, 1977. | MR | Zbl

[8] A. Alvino, Un caso limite della diseguaglianza di Sobolev in spazi di Lorentz, Rend. Accad. Sci. Fis. Mat. Napoli, 44, 1977. | Zbl

[9] A. Alvino-L. Boccardo-V. Ferone-L. Orsina-G. Trombetti, in preparazione.

[10] A. Alvino-J. I. Díaz-P. L. Lions-G. Trombetti, Équations elliptiques et symétrisation de Steiner, C. R. Acad. Sci. Paris, Sér. I Math., 314, 1992. | MR | Zbl

[11] A. Alvino-J. I. Díaz-P. L. Lions-G. Trombetti, Elliptic equations and Steiner symmetrization, Comm. Pure Appl. Math., 49 (3), 1996. | MR | Zbl

[12] A. Alvino-V. Ferone-P. L. Lions-G. Trombetti, Convex symmetrization and applications, Ann. Inst. H. Poincaré - Analyse Nonlinéaire, 14, 1997. | fulltext mini-dml | MR | Zbl

[13] A. Alvino-V. Ferone-G. Trombetti, Moser-type inequalities in Lorentz spaces, Potential Analysis, 5, 1996. | MR | Zbl

[14] A. Alvino-V. Ferone-G. Trombetti, A priori estimates for a class of non uniformly elliptic equations, Atti Sem. Mat. Fis. Univ. Modena, 46-suppl., 1998. | MR | Zbl

[15] A. Alvino-V. Ferone-G. Trombetti, On the properties of some nonlinear eigenvalues, SIAM J. Math. Anal., 29, 1998. | MR | Zbl

[16] A. Alvino-V. Ferone-G. Trombetti, Estimates for the gradient of nonlinear elliptic equations with $L^{1}$ data, in corso di stampa su Ann. Mat. Pura Appl.. | Zbl

[17] A. Alvino-P. L. Lions-S. Matarasso-G. Trombetti, Comparison results for solutions to elliptic problems via symmetrization, Ann. Inst. H. Poincaré - Analyse Nonlinéaire, 16, 2, 1999. | fulltext mini-dml | MR | Zbl

[18] A. Alvino-P. L. Lions-G. Trombetti, Comparaison des solutions d'équations paraboliques et elliptiques par symétrisation. Une méthode nouvelle, C. R. Acad. Sci. Paris, Sér. I Math., 303, no. 20, 1986. | MR | Zbl

[19] A. Alvino-P. L. Lions-G. Trombetti, On optimization problems with prescribed rearrangements, Nonlinear Analysis T.M.A, 13, 1989. | MR | Zbl

[20] A. Alvino-P. L. Lions-G. Trombetti, Comparison results for elliptic and parabolic equations via Schwartz symmetrization, Ann. Inst. H. Poincaré - Analysis Nonlinéaire, 7, 1990. | fulltext mini-dml | MR | Zbl

[21] A. Alvino-P. L. Lions-G. Trombetti, Comparison results for elliptic and parabolic equations via Symmetrization: a new approach, Diff. Int. Eq., 4, 1991. | MR | Zbl

[22] A. Alvino-S. Matarasso-G. Trombetti, Variational inequalities and rearrangements, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (9), 3, 1992. | MR | Zbl

[23] A. Alvino-G. Trombetti, Sulle migliori costanti di maggiorazione per una classe di equazioni ellittiche degeneri, Ricerche di Matematica, 27, 1978. | MR | Zbl

[24] A. Alvino-G. Trombetti, Equazioni ellittiche con termini di ordine inferiore e riordinamenti, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 66, 1979. | MR | Zbl

[25] A. Alvino-G. Trombetti, Sulle migliori costanti di maggiorazione per una classe di equazioni ellittiche degeneri e non, Ricerche di Matematica, 30, 1981. | MR | Zbl

[26] A. Alvino-G. Trombetti, A lower bound for the first eigenvalue of an elliptic operator, Math. Anal. Appl., 94, 1983. | MR | Zbl

[27] A. Alvino-G. Trombetti, Isoperimetric inequalities connected with torsion problem and capacity, Boll. U.M.I. (6), 4-B, 1985. | MR

[28] V. Andrievskiĭ-W. Hansen-N. Nadirashvili, Isoperimetric inequalities for capacities in the plane, Math. Ann., 292, no. 2, 1992. | MR | Zbl

[29] G. Aronsson, An integral inequality and plastic torsion, Arch. Rational Mech. Anal., 7, 1989. | MR | Zbl

[30] M. S. Ashbaugh-R. D. Benguria, Proof of the Payne-Pólya-Weinberger conjecture, Bull. Amer. Math. Soc. (N. S.), 25, no. 1, 1991. | fulltext mini-dml | MR | Zbl

[31] M. S. Ashbaugh-R. D. Benguria, A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Ann. of Math., (2) 135, no. 3, 1992. | MR | Zbl

[32] M. S. Ashbaugh-R. D. Benguria, Isoperimetric bounds for higher eigenvalue ratios for the n-dimensional fixed membrane problem, Proc. Royal Soc. Edinburgh, 123-A, no. 6, 1993. | MR | Zbl

[33] M. S. Ashbaugh-R. D. Benguria, On Rayleigh's conjecture for the clamped plate and its generalization to three dimensions, Duke Math. J., 78, no. 1, 1995. | fulltext mini-dml | MR | Zbl

[34] M. S. Ashbaugh-R. S. Laugesen, Fundamental tones and buckling loads of clamped planes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23, no. 2, 1996. | fulltext mini-dml | MR | Zbl

[35] T. Aubin, Problèmes isopèrimetriques et espaces de Sobolev, J. Diff. Geometry, 11, 1976. | fulltext mini-dml | MR | Zbl

[36] T. Aubin, Meilleures constantes dans le théorème d'inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal., 32, 1979. | MR | Zbl

[37] A. Ii Baernstein, A unified approach to symmetrization, Partial differential equations of elliptic type (A. Alvino, E. Fabes & G. Talenti eds.), Symposia Math., 35, Cambridge University Press, 1998. | Zbl

[38] A. Ii Baernstein-B. A. Taylor, Spherical rearrangements, subharmonic functions, and $^*$-functions in $n$-space, Duke Math. J., 43, no. 2, 1976. | fulltext mini-dml | MR | Zbl

[39] R. J. Bagby, Maximal functions and rearrangements: some new proofs, Ind. Univ. Math. J., vol. 32, no. 6, 1983. | MR | Zbl

[40] C. Bandle, Inégalités isopérimétriques pour des membranes vibrantes, C. R. Acad. Sci. Paris, Sér. A-B, 269, 1969. | MR | Zbl

[41] C. Bandle, Extensions of an inequality by Pólya and Schiffer for vibrating membranes, Pacific J. Math., 42, 1972. | fulltext mini-dml | MR | Zbl

[42] C. Bandle, Isoperimetric inequality for some eigenvalues of an inhomogeneous, free membrane, SIAM J. Appl. Math., 22, 1972. | MR | Zbl

[43] C. Bandle, A geometrical isoperimetric inequality and applications to problems of mathematical physics, Comment. Math. Helv., 49, 1974. | MR | Zbl

[44] C. Bandle, Isoperimetric inequalities for a class of nonlinear parabolic equations, Z.A.M.P., 27, no. 3, 1976. | MR | Zbl

[45] C. Bandle, On symmetrizations in parabolic equations, J. Analyse Math., 30, 1976. | MR | Zbl

[46] C. Bandle, Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, 7. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. | MR | Zbl

[47] C. Bandle-E. Giarrusso, Boundary blow up for semilinear elliptic equations with nonlinear gradient terms, Adv. Differential Equations, 1, no. 1, 1996. | MR | Zbl

[48] C. Bandle-J. Mossino, Rearrangement in variational inequalities, Ann. Mat. Pura Appl. (4), 138, 1984. | MR | Zbl

[49] C. Bandle-L. A. Peletier, Best Sobolev constants and Emden equations for the critical exponent in $S^{3}$, Math. Ann., 313, no. 1, 1999. | MR | Zbl

[50] W. Beckner, Geometric inequalities in Fourier analysis, Essays on Fourier Analysis in honor of Elias M. Stein (Princeton NJ 1991), Princeton Math. Ser. 42, Princeton University Press, Princeton, N. J. 1995. | MR | Zbl

[51] P. P. Bérard-D. Meyer, Inégalités isopérimétriques et applications, Ann. Sci. École Norm. Sup., 4e série, t. 15, 1982. | fulltext mini-dml | MR | Zbl

[52] M. F. Betta, Estimates for solutions of nonlinear degenerate elliptic equations, Atti Sem. Mat. Fis. Univ. Modena, 45, 1997. | MR | Zbl

[53] M. F. Betta-F. Brock-A. Mercaldo-M. R. Posteraro, A weighted isoperimetric inequality and applications to symmetrization, in corso di stampa su J. Ineq. Appl.. | Zbl

[54] M. F. Betta-V. Ferone-A. Mercaldo, Regularity for solutions of nonlinear elliptic equations, Bull. Sci. Math., 118, 1994. | MR | Zbl

[55] M. F. Betta-A. Mercaldo, Comparison and regularity results for a nonlinear elliptic equation, Nonlinear Analalysis T.M.A., 20, 1993. | MR | Zbl

[56] M. F. Betta-A. Mercaldo, Geometric inequalities related to Steiner symmetrization, Diff. Int. Eq., 10, no. 3, 1997. | MR | Zbl

[57] T. Bhattacharya-A. Weitsman, Some estimates for the symmetrized first eigenfunction of the Laplacian, Potential Analysis, 9, 1998. | MR | Zbl

[58] G. A. Bliss, An integral inequality, J. London Math. Soc., 5, 1930. | Jbk 56.0434.02

[59] L. Boukrim, Inégalités isopérimétriques pour un probléme d'électrostatique, C. R. Acad. Sci. Paris, Sér. I Math., 318, no. 5, 1994. | MR | Zbl

[60] M. Bramanti, Symmetrization in parabolic Neumann problems, Appl. Anal., vol. 40, no. 1, 1991. | MR | Zbl

[61] B. Brandolini-V. M. Monetti-L. Randazzo, A comparison result for a class of semilinear elliptic equations, Rend. Accad. Sci. Fis. Mat. Napoli (4), 64, 1997. | MR | Zbl

[62] H. J. Brascamp-E. H. Lieb-J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Funct. Anal., 17, 1974. | MR | Zbl

[63] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 54, 1991. | MR | Zbl

[64] H. Brezis, Laser beams and limiting case of Sobolev inequalities, Non-linear PDE's and their applications, Collège de France Seminar, vol. II (H. Brezis and J. L. Lions eds.), Res. Notes Math., no. 60, Pitman, London, 1982. | MR | Zbl

[65] H. Brezis-S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Communications in P.D.E., 5, 1980. | MR | Zbl

[66] F. Brock, Continuous Steiner-symmetrization, Math. Nachr., 172, 1995. | MR | Zbl

[67] J. Brothers-W. P. Ziemer, Minimal rearrangements of Sobolev functions, J. Reine Angew. Math., 384, 1988. | MR | Zbl

[68] P. Buonocore, Isoperimetric inequalities in the torsion problem for multiply connected domains, Z.A.M.P., 36, no. 1, 1985. | MR | Zbl

[69] P. Buonocore, Some isoperimetric inequalities in a special case of the problem of torsional creep, Appl. Anal., vol. 27, no. 1-3, 1988. | MR | Zbl

[70] G. R. Burton, Rearrangements of functions, maximization of convex functionals, and vortex rings, Math. Ann., 276, no. 2, 1987. | MR | Zbl

[71] G. R. Burton-J. B. Mcleod, Maximization and minimization on classes of rearrangements, Proc. Royal Soc. Edinburgh, 119-A, no. 3-4, 1991. | MR | Zbl

[72] S. S. Cheng, Isoperimetric eigenvalue problem of even order differential equations, Pacific J. Math., 99, no. 2, 1982. | fulltext mini-dml | MR | Zbl

[73] F. Chiacchio, An existence result for a nonlinear problem in a limit case, Le Matematiche (Catania), 53, 1998. | MR | Zbl

[74] G. Chiti, Rearrangements of functions and convergence in Orlicz spaces, Appl. Anal., 9, 1979. | MR | Zbl

[75] G. Chiti, Norme di Orlicz delle soluzioni di una classe di equazioni ellittiche, Boll. U.M.I. (5), 16-A, 1979. | Zbl

[76] G., A reverse Hölder inequality for the eigenfunctions of linear second order elliptic equations, Z.A.M.P., 33, 1982. | MR | Zbl

[77] K. M. Chong-N. M. Rice, Equimeasurable rearrangements of functions, Queen's papers in pure and applied mathematics, n. 28, Queen's University, Ontario, 1971. | MR | Zbl

[78] A. Cianchi, Local minimizers and rearrangements, Appl. Math. Optim., 27, no. 3, 1993. | MR | Zbl

[79] A. Cianchi, On the $L^{q}$ norm of functions having equidistributed gradients, Nonlinear Anal., 26, no. 12, 1996. | MR | Zbl

[80] A. Cianchi-R. Schianchi, A priori sharp estimates for minimizers, Boll. U.M.I. (7), 7-B, no. 4, 1993. | MR | Zbl

[81] J. M. Coron, The continuity of rearrangement in $W^{1,p}(\mathbb{R})$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11, 1984. | fulltext mini-dml | MR | Zbl

[82] M. G. Crandall-L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc., 78, 1980. | MR | Zbl

[83] P. S. Crooke-R. P. Sperb, Isoperimetric inequalities in a class of nonlinear eigenvalue problems, SIAM J. Math. Anal., 9, 1978. | MR | Zbl

[84] J. A. Crowe-J. A. Zweibel, Rearrangements of functions, J. Funct. Anal., 66, 1986. | MR | Zbl

[85] E. De Giorgi, Su una teoria generale della misura $(r-1)$-dimensionale in uno spazio ad $r$ dimensioni, Ann. Mat. Pura Appl. (4), 36, 1954. | Zbl

[86] T. Del Vecchio, Nonlinear elliptic equations with measure data, Potential Analysis, 4, no. 2, 1995. | MR | Zbl

[87] J. I. Díaz, Applications of symmetric rearrangement to certain nonlinear elliptic equations with a free boundary, Nonlinear differential equations (Granada, 1984), Res. Notes in Math., 132, Pitman, Boston, Mass.-London, 1985. | MR | Zbl

[88] J. I. Díaz-J. Mossino, Isoperimetric inequalities in the parabolic obstacle problems, J. Math. Pures Appl. (9), 71, no. 3, 1992. | MR | Zbl

[89] R. J. Douglas, Rearrangements of functions on unbounded domains, Proc. Royal Soc. Edinburgh, 124-A, 1994. | MR | Zbl

[90] G. F. Duff, Integral inequalities for equimeasurable rearrangements, Canad. J. Math., 22, 1970. | MR | Zbl

[91] H. Egnell-F. Pacella-M. Tricarico, Some remarks on Sobolev inequalities, Nonlinear Anal., 13, no. 6, 1989. | MR | Zbl

[92] A. Ehrhard, Inégalités isopérimetriques et intégrales de Dirichlet gaussiennes, Ann. Sci. École Norm. Sup., 17, 1984. | fulltext mini-dml | MR | Zbl

[93] J. B. Epperson, A class of monotone decreasing rearrangements, J. Math. Anal. Appl., 150, 1990. | MR | Zbl

[94] G. Faber, Beweis dass unter allen homogenen membranen von gleicher fläche und gleicher spannung die kreisförmige den tiefsten grundton gibt, Sitzungsber. Bayer. Akad. Wiss., Math.-Naturwiss. Kl., 1923. | Jbk 49.0342.03

[95] A. Ferone-V. Ferone-R. Volpicelli, Moser-type inequalities for solutions of linear elliptic equations with lower order terms, Diff. Int. Eq., 10, 1997. | MR | Zbl

[96] A. Ferone-R. Volpicelli, Symmetrization in parabolic obstacle problems, Bull. Sci. Math., 120, 1996. | MR | Zbl

[97] A. Ferone-R. Volpicelli, Some relations between pseudo-rearrangement and relative rearrangement, in corso di stampa su Nonlinear Analysis T.M.A.. | Zbl

[98] V. Ferone, Symmetrization in a Neumann problem, Le Matematiche (Catania), 41, 1986. | MR | Zbl

[99] V. Ferone, Symmetrization results in electrostatic problems, Ricerche di Matematica, 37, 1988. | MR | Zbl

[100] V. Ferone-A. Mercaldo, A second order derivation formula for functions defined by integrals, C. R. Acad. Sci. Paris, Sér. I Math., 326, 1998. | MR | Zbl

[101] V. Ferone-A. Mercaldo, in preparazione.

[102] V. Ferone-F. Murat, Quasilinear problems having quadratic growth in the gradient: an existence result when the source term is small, Équations aux dérivées partielles et applications, Gauthier - Villars, Éd. Sci. Méd. Elsevier, Paris, 1998. | MR | Zbl

[103] V. Ferone-F. Murat, Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, in corso di stampa su Nonlinear Analysis T.M.A. | Zbl

[104] V. Ferone-M. R. Posteraro, Maximization on classes of functions with fixed rearrangemet, Diff. Int. Eq., 4, no. 4, 1989. | Zbl

[105] V. Ferone-M. R. Posteraro, On a class of quasilinear elliptic equations with quadratic growth in the gradient, Nonlinear Analysis T.M.A., 20, 1993. | MR | Zbl

[106] V. Ferone-M. R. Posteraro-J.-M. Rakotoson, $L^{\infty}$-estimates for nonlinear elliptic problems with $p$-growth in the gradient, J. Ineq. Appl., vol. 3, 1999. | MR | Zbl

[107] V. Ferone-M. R. Posteraro-R. Volpicelli, An inequality concerning rearrangements of functions and Hamilton-Jacobi equations, Arch. Rational Mech. Anal., 125, 1993. | MR | Zbl

[108] D. G. De Figueiredo-P. L. Lions, On pairs of positive solutions for a class of semilinear elliptic problems, Ind. Univ. Math. J., vol. 34, 1985. | MR | Zbl

[109] W. H. Fleming-R. Rishel, An integral formula for total gradient variation, Arch. Math., 11, 1960. | MR | Zbl

[110] A. Friedman-J. B. Mcleod, Strict inequalities for integrals of decreasingly rearranged functions, Proc. Royal Soc. Edinburgh, 102-A, no. 3-4, 1986. | MR | Zbl

[111] A. M. Garsia-E. Rodemich, Monotonicity of certain functionals under rearrangements, Ann. Inst. Fourier (Grenoble), 24, 1974. | fulltext mini-dml | MR | Zbl

[112] E. Giarrusso, Estimates for generalized subsolutions of first order Hamilton-Jacobi equations and rearrangements, Nonlinear Analysis T.M.A., 18, 1992. | MR | Zbl

[113] E. Giarrusso-D. Nunziante, Su un problema di autovalori per una classe di equazioni ellittiche degeneri, Le Matematiche (Catania), 36, 1981. | MR

[114] E. Giarrusso-D. Nunziante, Symmetrization in a class of first-order Hamilton-Jacobi equations, Nonlinear Analysis T.M.A., 8, 1984. | MR | Zbl

[115] E. Giarrusso-D. Nunziante, Regularity theorems in limit cases for solutions of linear and nonlinear elliptic equations, Rend. Istit. Mat. Univ. Trieste, 20, 1988. | MR | Zbl

[116] E. Giarrusso-G. Trombetti, Estimates for solutions of elliptic equations in a limit case, Bull. Austral. Math. Soc., vol. 36, 1987. | MR | Zbl

[117] N. Grenon-Isselkou-J. Mossino, Existence de solutions bornées pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris, 321, 1995. | MR | Zbl

[118] W. Hansen-N. Nadirashvili, Isoperimetric inequalities for capacities, Harmonic analysis and discrete potential theory (Frascati, 1991), Plenum, New York, 1992. | MR

[119] G. H. Hardy-J. E. Littelwood-G. Pólya G., Inequalities, Cambridge University Press, 1964.

[120] W. K. Hayman, Some bounds for principal frequency, Appl. Anal., vol. 7, 1978. | MR | Zbl

[121] J. Hersch, Une interpretation du principe de Thomson et son analogue pour la fréquence fondamentale d'une membrane. Application., C. R. Acad. Sci. Paris, t. 248, 1959. | MR | Zbl

[122] J. Hersch, Isoperimetric monotonicity: some properties and conjectures (connections between isoperimetric inequalities), SIAM Rev., 30, no. 4, 1988. | MR | Zbl

[123] K. Hildén, Symmetrization of functions in Sobolev spaces and the isoperimetric inequality, Manuscripta Math., 18, 1976. | MR | Zbl

[124] B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, 1150. Springer-Verlag, Berlin-New York, 1985. | MR | Zbl

[125] B., On a family of torsional creep problems, J. Reine Angew. Math., 410, 1990. | MR | Zbl

[126] J. B. Keller, The shape of the strongest column, Arch. Rational Mech. Anal., 5, 1960. | MR

[127] S. Kesavan, Some remarks on a result of Talenti, Ann. Scuola Norm. Sup. Pisa Cl.Sci. (4), 15, no. 3, 1988. | fulltext mini-dml | MR | Zbl

[128] S. Kesavan, On a comparison theorem via symmetrization, Proc. Royal Soc.Edinburgh, 119-A, no. 1-2, 1991. | MR | Zbl

[129] M. T. Kohler-Jobin, Démonstration de l'inégalité isopérimétrique $P \lambda^2 \geq \pi j_0^4 / 2$, conjecturée par Polya et Szegö, C. R. Acad. Sc. Paris, t. 281, 1975. | MR | Zbl

[130] M. T. Kohler-Jobin, Sur la première fonction propre d'une membrane: une extension à $N$ dimensions de l'inégalité isopérimétrique de Payne-Rayner, J.Math. Phys. Appl., 28, 1977. | MR | Zbl

[131] M. T. Kohler-Jobin, Une méthode de comparaison isopérimétrique de fonctionelles de domaines de la physique mathématique I. Première part: une démonstration de la conjecture isopérimétrique $P\lambda^2 \geq \pi j^{4}_{0}/2$ de Polya et Szegö, J. Math. Phys. Appl., 29, 1978. | Zbl

[132] E. Krahn, Über eine von Rayleigh formulierte minimaleigenschaft des kreises, Math. Ann., 94, 1924. | Jbk 51.0356.05

[133] E. B. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57, no. 2, 1977. | Zbl

[134] E. H. Lieb, Sharp constants in the Hardy-Littelwood-Sobolev and related inequalities, Ann. of Math., 118, 1983. | MR | Zbl

[135] P. L. Lions, Quelques remarques sur la symétrisation de Schwarz, Nonlinear partial differential equations and their applications, Collège de France Seminars, vol. 1, Pitman 1981. | MR | Zbl

[136] P.-L. Lions-F. Pacella-M. Tricarico, Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Ind. Univ. Math. J., vol. 37, no. 2, 1988. | MR | Zbl

[137] V. A. Liskevich, Some limit cases in estimates for solutions of second order elliptic equations, Houston J. Math., vol. 19, no. 4, 1993. | MR | Zbl

[138] C. Maderna-C. D. Pagani-S. Salsa, Quasilinear elliptic equations with quadratic growth in the gradient, J. Differential Equations, 97, 1992. | MR | Zbl

[139] C. Maderna-S. Salsa, Symmetrization in Neumann problems, Appl. Anal., vol. 9, 1979. | MR | Zbl

[140] C. Maderna-S. Salsa, Dirichlet problem for elliptic equations with nonlinear first order terms: a comparison result, Ann. Mat. Pura Appl., 148, 1987. | MR | Zbl

[141] E. Makai, Bounds for the principal frequency of a membrane and the torsional rigidity of a beam, Acta Sci. Math. (Szeged), 20, 1959. | MR | Zbl

[142] E. Makai, A proof of Saint-Venant's theorem on torsional rigidity, Acta Math. Acad. Sci. Hungar., 17, 1966. | MR | Zbl

[143] V. G. Maz'Ja, On weak solutions of the Dirichlet and Neumann problems, Trudy Moskov. Mat. Obshch, 20, 1969; trad. ingl.: Trans. Moscow Math. Soc., 20, 1969. | Zbl

[144] A. Mercaldo, Boundedness of minimizers of degenerate functionals, Diff. Int. Eq., 9, 1996. | MR | Zbl

[145] A. Mercaldo, A remark on comparison results for first-order Hamilton-Jacobi equations, Nonlinear Analysis T.M.A., 9, 1997. | Zbl

[146] J. Moser, A sharp form of an inequality by N. Trudinger, Ind. Univ. Math. J., vol. 20, 1971. | MR | Zbl

[147] J. Mossino, Inégalitée isopérimétriques et applications en physique, Travaux en Cours. Hermann, Paris, 1984. | MR | Zbl

[148] J. Mossino-J.-M. Rakotoson, Isoperimetric inequalities in parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 13, no. 1, 1986. | fulltext mini-dml | MR | Zbl

[149] J. Mossino-R. Temam, Directional derivative of the increasing rearrangement mapping and application to a queer differential equation in plasma physics, Duke Math. J., 48, no. 3, 1981. | fulltext mini-dml | MR | Zbl

[150] F. Mugelli-G. Talenti, Sobolev inequalities in 2-D hyperbolic space: a borderline case, J. Ineq. Appl., vol. 2, no. 3, 1998. | MR | Zbl

[151] D. Mugnai-G. Talenti, Estimating the resolvent of elliptic second-order partial differential operators, Le Matematiche (Catania), 51 (1996), no. 2, 1997. | MR | Zbl

[152] N. Nadirashvili, Rayleigh's conjecture on the principal frequency of the clamped plate, Arch. Rational Mech. Anal., 129, no. 1, 1995. | MR | Zbl

[153] E. T. Oklander, Interpolación, espacios de Lorentz y teorema de Marchinkiewicz, Cursos y Seminarios de Matemática, Fasc. 20 Universidad de Buenos Aires, Buenos Aires, 1965. | MR | Zbl

[154] R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc., 84, no. 6, 1978. | fulltext mini-dml | MR | Zbl

[155] F. Pacella-M. Tricarico, Symmetrization for a class of elliptic equations with mixed boundary conditions, Atti Sem. Mat. Fis. Univ. Modena, 34, no. 1, 1985/86. | MR | Zbl

[156] L. E. Payne, Inequalities for eigenvalues of membranes and plates, J. Rational Mech. Anal., 4, 1955. | MR | Zbl

[157] L. E. Payne, News isoperimetric inequalities for eigenvalues and other physical quantities, Comm. Pure Appl. Math., 9, 1956. | MR | Zbl

[158] L. E. Payne, Inequalities for eigenvalues of supported and free plates, Quart. Appl. Math., 16, 1958. | MR | Zbl

[159] L. E. Payne, Isoperimetric inequalities for eigenvalues and their applications, Autovalori e autosoluzioni, Centro Internazionale Matematico Estivo 20 ciclo, Chieti, 1962. | Zbl

[160] L. E. Payne, Some isoperimetric inequalities in the torsion problem for multiply connected regions, Studies in Mathematical Analysis and Related Topics: Essays in honor of Pólya G., Stanford, California, 1962. | MR | Zbl

[161] L. E. Payne, Isoperimetric inequalities and their applications, SIAM Rev., 9, 1967. | MR | Zbl

[162] L. E. Payne-G. Pólya-H. F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. and Phys., 35, 1956. | MR | Zbl

[163] L. E. Payne-M. E. Rayner, An isoperimetric inequality for the first eigenfunction in the fixed membrane problem, Z.A.M.P., 23, 1972. | MR | Zbl

[164] L. E. Payne-M. E. Rayner, Some isoperimetric norm bounbs for solutions of the Helmholtz equation, Z.A.M.P., 24, 1973. | MR | Zbl

[165] L. E. Payne-H. F. Weinberger, Some isoperimetric inequalities for membrane frequencies and torsional rigidity, J. Math. Anal. Appl., 2, 1961. | MR | Zbl

[166] L. E. Payne-A. Weistein, Capacity, virtual mass and generalized symmetrization, Pacific J. Math., 2, 1952. | fulltext mini-dml | MR | Zbl

[167] M. Păsić, Isoperimetric inequalities in quasilinear elliptic equations of Leray-Lions type, J. Math. Pures Appl. (9), 75, no. 4, 1996. | MR | Zbl

[168] H. Poincaré, Figures d'equilibre d'une masse fluide, Naud, Paris, 1903. | Jbk 34.0757.05

[169] G. Pólya, Torsional rigidity, principal frequency, eletrostatic capacity and symmetrization, Quart. Appl. Math., 6, 1948. | MR | Zbl

[170] G. Pólya, On the eigenvalues of vibrating membranes, Proc. London Math. Soc., 11, 1961. | MR | Zbl

[171] G. Pólya-G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. of Math. Studies, n. 27, Princeton University Press, 1951. | MR | Zbl

[172] G. Pólya-A. Weinstein, On the torsional rigidity of multiply connected crosssections, Ann. of Math., 52, 1950. | MR | Zbl

[173] S. Poornima, An embedding theorem for the Sobolev space $W^{1,1}$, Bull. Sci. Math. (2), 107, 1983. | MR | Zbl

[174] M. R. Posteraro, Estimates for solutions of nonlinear variational inequalities, Ann. Inst. H. Poincare - Anal. Nonlineaire, 12, 5, 1995. | fulltext mini-dml | MR | Zbl

[175] M. R. Posteraro, On the solutions of the equation $\Delta u = e^u$ blowing up on the boundary, C. R. Acad. Sci. Paris, Ser. I Math, 332, 1996. | MR | Zbl

[176] M. H. Protter, Lower bounds for the first eigenvalue of elliptic equations, Ann. of Math., 71, 1960. | MR | Zbl

[177] J.-M. Rakotoson, Rearrangement relatif dans les equations elliptiques quasi-lineaires avec un second membre distribution: application a un theoreme d'existence et de regularite, J. Differential Equations, 66, no. 3, 1987. | MR | Zbl

[178] J.-M. Rakotoson, Some properties of the relative rearrangement, J. Math. Anal. Appl., 135, no. 2, 1988. | MR | Zbl

[179] J.-M. Rakotoson, A differentiability result for the relative rearrangement, Diff. Int. Eq., 2, no. 3, 1989. | MR | Zbl

[180] M. Rakotoson, Relative rearrangement for highly nonlinear equations, Nonlinear Anal., 24, no. 4, 1995. | MR | Zbl

[181] J.-M. Rakotoson-B. Simon, Relative rearrangement on a measure space application to the regularity of weighted monotone rearrangement. I, II, Appl. Math. Letters, 6, no. 1, 1993. | MR | Zbl

[182] J.-M. Rakotoson-R. Temam, Relative rearrangement in quasilinear elliptic variational inequalities, Ind. Univ. Math. J., 36, no. 4, 1987. | MR

[183] J.-M. Rakotoson-R. Temam, A co-area formula with applications to monotone rearrangement and to regularity, Arch. Rational Mech. Anal., 109, no. 3, 1990. | MR | Zbl

[184] Lord Rayleigh, The Theory of Sound, 2nd ed., Macmillan, London, 1894/96. | Jbk 27.0701.05

[185] J. V. Ryff, Measure preserving transformations and rearrangements, J. Math. Anal. Appl., 31, 1970. | MR | Zbl

[186] B. De St. Venant, Memoire sur la torsion des prismes, Memor. pres. divers. savants Acad. Sci., 14, 1856.

[187] F. Schulz-V. Vera De Serio, Symmetrization with respect to a measure, Trans. Amer. Math. Soc., 337, 1993. | MR | Zbl

[188] W. Schumann, On isoperimetric inequalities in plasticity, Quart. Appl. Math., 16, 1958. | MR | Zbl

[189] B. Schwarz, Bounds for the principal frequency of the nonhomogeneous membrane and for the generalized Dirichlet integral, Pacific J. Math., 7, 1957. | fulltext mini-dml | MR | Zbl

[190] E. Sperner, Zur symmetrisierung für funktionen auf sphären, Math. Z., 134, 1973. | MR | Zbl

[191] E. Sperner, Symmetrisierung für funktionen mehrerer reeller variabel, Manuscripta Math., 11, 1974. | MR | Zbl

[192] E. Sperner, Spherical symmetrization and eigenvalue estimates, Math. Z., 176, 1976. | MR | Zbl

[193] W. Spiegel, Über die symmetrisierung stetiger funktionen im euklidishen raum, Archiv. der Math., 24, 1973. | MR | Zbl

[194] J. Steiner, Einfache Beweise der isoperimetrischen Hauptsätze, Ges. Werke II, Berlin, 1882. | Zbl

[195] G. Szegö, Über einige neue Extremalaufgaben der Potential-theorie, Math. Z., 31, 1930. | Jbk 56.1069.03

[196] G. Szegö, Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal., 3, 1954. | MR | Zbl

[197] R. Tahraoui, Symmetrization inequalities, Nonlinear Anal., 27, no. 8, 1996. | MR | Zbl

[198] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., (4) 110, 1976. | MR | Zbl

[199] G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 3, no. 4, 1976. | fulltext mini-dml | MR | Zbl

[200] G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl. (4), 120, 1979. | MR | Zbl

[201] G. Talenti, Some estimates for solutions to Monge-Ampère equations in dimension two, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8, 1981. | fulltext mini-dml | MR | Zbl

[202] G. Talenti, On the first eigenvalue of the clamped plate, Ann. Mat. Pura Appl. (4), 129, 1981. | MR | Zbl

[203] G. Talenti, Linear elliptic p.d.e.'s: level sets, rearrangements and a priori estimates of solutions, Boll. U.M.I. (6), 4-B, no. 3, 1985. | MR | Zbl

[204] G. Talenti, Rearrangements of functions and partial differential equations, Nonlinear diffusion problems (Montecatini Terme, 1985), Lect. Notes in Math., 1224, Springer, Berlin-New York, 1986. | MR | Zbl

[205] G. Talenti, Assembling a rearrangement, Arch. Rational Mech. Anal., 98, no. 4, 1987. | MR | Zbl

[206] G. Talenti, Some inequalities of Sobolev type on two-dimensional spheres, General inequalities, 5 (Oberwolfach, 1986), Internat. Schriftenreihe Numer. Math., 80, Birkhäuser, Basel-Boston, MA, 1987. | MR | Zbl

[207] G. Talenti, Boundness of minimizers, Hokkaido Math. J., 19, no. 2, 1990. | MR | Zbl

[208] G. Talenti, Rearrangements and PDE, Inequalities (Birmingham, 1987), Lecture Notes in Pure and Appl. Math., 129, Dekker, New York, 1991. | MR | Zbl

[209] G. Talenti, On isoperimetric theorems of mathematical physics, Handbook of convex geometry, vol. A, B, North-Holland, Amsterdam, 1993. | MR | Zbl

[210] G. Talenti, The standard isoperimetric theorem, Handbook of convex geometry, vol. A, B, North-Holland, Amsterdam, 1993. | MR | Zbl

[211] L. Tonelli, Sur un probleme de Lord Rayleigh, Monatsh. Math. Phys., 37, 1930. | Jbk 56.1080.03 | MR

[212] R. Toupin, St. Venant's principle, Arch. Rational Mech. Anal., 18, 1965. | MR | Zbl

[213] M. Transirico, Symmetrization in a nonlinear degenerate parabolic problem, Ann. Mat. Pura Appl. (4), 149, 1987. | MR | Zbl

[214] C. Trombetti, Existence and regularity for a class of non uniformly elliptic equations in two dimension, in corso di stampa su Diff. Int. Eq.. | Zbl

[215] G. Trombetti-G. L. Vazquez, Symmetrization results for elliptic equations with lower order terms, Ann. Fac. Sci. Toulouse, 7, 1985. | fulltext mini-dml | Zbl

[216] N. S. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech., vol. 17, 1967. | MR | Zbl

[217] N. S. Trudinger, On new isoperimetric inequalities and symmetrization, J. Reine Angew. Math., 488, 1997. | MR | Zbl

[218] K. Tso, On symmetrization and Hessian equations, J. Analyse Math., 52, 1989. | MR | Zbl

[219] J. L. Vazquez, Symétrization pour $u_t=\Delta\phi(u)$ et applications, C. R. Acad. Sci. Paris, t. 295, 1982 e C. R. Acad. Sci. Paris, t. 296, 1983. | MR | Zbl

[220] C. Voas-D. Yaniro, Symmetrization and optimal control for elliptic equations, Proc. Amer. Math. Soc., 99, no. 3, 1987. | MR | Zbl

[221] C. Voas-D. Yaniro, Elliptic equations, rearrangements, and functions of bounded lower oscillation, J. Math. Anal. Appl., 134, no. 1, 1988. | MR | Zbl

[222] R. Volpicelli, Comparison results for solutions of parabolic equations, Ricerche di Matematica, 42, 1993. | MR | Zbl

[223] H. F. Weinberger, Upper and lower bounds for torsional rigidity, J. Math. and Phys., 32, 1953. | MR | Zbl

[224] H. F. Weinberger, An isoperimetric inequality for the $N$-dimensional free membrane problem, J. Rational Mech. Anal., 5, 1956. | MR | Zbl

[225] H. F. Weinberger, Symmetrization in uniformly elliptic problems, Studies in Mathematical Analysis and Related topics: Essays in honor of G. Szegö, Stanford University Press, Stanford, California, 1962. | MR | Zbl