Equazioni differenziali $p$-adiche e interpolazione $p$-adica di formule classiche
Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 3, pp. 573-600.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We shortly introduce non-archimedean valued fields and discuss the difficulties in the corresponding theory of analytic functions. We motivate the need of $p$-adic cohomology with the Weil Conjectures. We review the two most popular approaches to $p$-adic analytic varieties, namely rigid and Berkovich analytic geometries. We discuss the action of Frobenius in rigid cohomology as similar to the classical action of covering transformations. When rigid cohomology is parametrized by twisting characters, Frobenius is a source of interesting $p$-adic analytic functions of those characters, like Morita's $p$-adic gamma function $\Gamma_{p}$. We conclude with some more examples of this phenomenon in connection with Gauss generalized hypergeometric equation and with an integral formula of Selberg.
@article{BUMI_2000_8_3B_3_a1,
     author = {Baldassarri, Francesco},
     title = {Equazioni differenziali $p$-adiche e interpolazione $p$-adica di formule classiche},
     journal = {Bollettino della Unione matematica italiana},
     pages = {573--600},
     publisher = {mathdoc},
     volume = {Ser. 8, 3B},
     number = {3},
     year = {2000},
     zbl = {0984.12006},
     mrnumber = {1713695},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a1/}
}
TY  - JOUR
AU  - Baldassarri, Francesco
TI  - Equazioni differenziali $p$-adiche e interpolazione $p$-adica di formule classiche
JO  - Bollettino della Unione matematica italiana
PY  - 2000
SP  - 573
EP  - 600
VL  - 3B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a1/
LA  - it
ID  - BUMI_2000_8_3B_3_a1
ER  - 
%0 Journal Article
%A Baldassarri, Francesco
%T Equazioni differenziali $p$-adiche e interpolazione $p$-adica di formule classiche
%J Bollettino della Unione matematica italiana
%D 2000
%P 573-600
%V 3B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a1/
%G it
%F BUMI_2000_8_3B_3_a1
Baldassarri, Francesco. Equazioni differenziali $p$-adiche e interpolazione $p$-adica di formule classiche. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 3, pp. 573-600. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a1/

[A] Y. André, $p$-adic orbifolds and $p$-adic triangle groups, Prépublication de l'Institut de Mathématiques de Jussieu, 183, Septembre 1998. | MR | Zbl

[An1] G. Anderson, The evaluation of Selberg sums, Comptes Rendus Acad. Sci. Paris, Sér. I, Math., 311 (1990), 469-472. | MR | Zbl

[An2] G. Anderson, A short proof of Selberg's generalized Beta formula, Forum Math., 3 (1991), 415-417. | MR | Zbl

[Ba] H. Bateman, et al.: Higher Transcendental Functions, McGraw-Hill, 1953. | MR | Zbl

[B1] F. Baldassarri, $p$-adic interpolation of Evans sums and deformation of the Selberg integrals: an application of Dwork's theory, Proceedings of the Taniguchi Workshop 1991 (M. Yoshida Ed.), Fukuoka 1991, 7-35.

[B2] F. Baldassarri, Special values of symmetric hypergeometric functions, Trans. Amer. Math. Soc., 348 (1996), 2249-2289. | MR | Zbl

[BC] F. Baldassarri-B. Chiarellotto, Algebraic versus rigid cohomology with logarithmic coefficients, in Barsotti Memorial Symposium, Perspectives in Mathematics Vol. 15, Academic Press 1994, 11-50. | MR | Zbl

[Be] P. Berthelot, Cohomologie rigide et cohomologie rigide à support propre, to appear.

[BGR] S. Bosch-U. Güntzer, R. Remmert, Non-archimedean Analysis, Grundlehren der math. Wissenschaften 261, Springer-Verlag, 1984. | MR | Zbl

[Bk1] V. Berkovich, Spectral Theory and Analytic Geometry over Non-archimedean Fields, Math. Surveys and Monographs, Number 33, AMS 1990. | MR | Zbl

[Bk2] V. Berkovich, Smooth $p$-adic analytic spaces are locally contractible, Inv. Math., 137 (1999), 1-84. | MR | Zbl

[BO] P. Berthelot-A. Ogus, Notes on Crystalline Cohomology, Mathematical Notes, Princeton University Press, Princeton N.J., 1978. | MR | Zbl

[BL1] S. Bosch-W. Lütkebohemert, Stable reduction and uniformization of abelian varieties I, Math. Ann., 270 (1985), 349-379. | MR | Zbl

[BL1] S. Bosch-W. Lütkebohemert, Stable reduction and uniformization of abelian varieties II, Inv. Math., 78 (1984), 257-297. | MR | Zbl

[Bo] M. Boyarsky, $p$-adic gamma function and Dwork cohomology, Trans. Amer. Math. Soc., 257 (1980), 359-369. | MR | Zbl

[Cl] P. Colmez, Intégration sur les variétés $p$-adiques, Astérisque 248, Soc. Math. de France, 1998. | MR | Zbl

[Co] R. Coleman, Dilogarithms, regulators and $p$-adic $L$-functions, Inv. Math., 69 (1982), 171-208. | MR | Zbl

[De] P. Deligne, La conjecture d Weil I, Publ. Math. I.H.E.S., 43 (1974), 273-307. | fulltext mini-dml | MR | Zbl

[Di] J. Diamond, Hypergeometric series with a $p$-adic variable, Pacific J. Math. Soc., 94 (1981), 265-276. | fulltext mini-dml | MR | Zbl

[Dw1] B. Dwork, On the rationality of the zeta function of an algebraic variety, Amer. J. of Math., 82 (1960), 631-648. | MR | Zbl

[Dw2] B. Dwork, On the zeta function of a hypersurface, Publ. Math. IHES, 12 (1962), 5-68. | fulltext mini-dml | MR | Zbl

[Dw3] B. Dwork, Lectures on $p$-adic Differential Equations, Grundlehren der mathematischen Wissenschaften 253, Springer (1982), 310 pages. | MR | Zbl

[Dw4] B. Dwork, Generalized Hypergeometric Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford (1990), 188 pages. | MR | Zbl

[GP] L. Gerritzen-M. Van Der Put, Schottky Groups and Mumford Curves, LNM 817, Springer, 1980. | MR | Zbl

[GrKo] B. Gross-N. Koblitz, Gauss sums and the $p$-adic $\Gamma$-function, Annals of Math., 109 (1979), 569-581. | MR | Zbl

[I] L. Illusie, Cohomologie de de Rham et cohomologie étale $p$-adique (d'après G. Faltings, J.-M. Fontaine et al.), Sém. Bourbaki, Exp. 726, Astérisque, 189-190 (1990), 325-374. | fulltext mini-dml | MR | Zbl

[K] N. Katz, Exponential Sums and Differential Equations, Annals of Math. Studies N. 124, Princeton Univ. Press, 1990. | MR | Zbl

[Ko] N. Koblitz, The hypergeometric function with $p$-adic parameters, in Proceedings of the Queen's (Ontario) Number Theory Conference, 1979, 319-328. | MR | Zbl

[L] S. Lang, Algebraic Number Theory, Addison-Wesley, 1970. | MR | Zbl

[Mo] Y. Morita, A $p$-adic analogue of the $\Gamma$-function, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22 (1975), 255-266. | MR | Zbl

[P] O. Piltant, Frobenius pour les sommes de Selberg, Math. Ann., 303 (1995), 435-456. | MR | Zbl

[Po] E. G. C. Poole, Introduction to the Theory of Linear Differential Equations, Dover Publications Inc., New York (1960), 199 pages. | MR | Zbl

[W] A. Weil, Number of solutions of equations over finite fields, Bull. Amer. Math. Soc., 55 (1949), 497-508. | fulltext mini-dml | MR | Zbl

[Y] P. Th. Young, Apéry numbers, Jacobi sums, and special values of generalized $p$-adic hypergeometric functions, J. of Number Theory, 41 (1992), 231-255. | MR | Zbl