Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2000_8_3B_2_a8, author = {Boni, Th\'eodore K.}, title = {On blow-up and asymptotic behavior of solutions for some semilinear parabolic systems of second order}, journal = {Bollettino della Unione matematica italiana}, pages = {375--409}, publisher = {mathdoc}, volume = {Ser. 8, 3B}, number = {2}, year = {2000}, zbl = {0964.35070}, mrnumber = {1013086}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_2_a8/} }
TY - JOUR AU - Boni, Théodore K. TI - On blow-up and asymptotic behavior of solutions for some semilinear parabolic systems of second order JO - Bollettino della Unione matematica italiana PY - 2000 SP - 375 EP - 409 VL - 3B IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_2_a8/ LA - en ID - BUMI_2000_8_3B_2_a8 ER -
%0 Journal Article %A Boni, Théodore K. %T On blow-up and asymptotic behavior of solutions for some semilinear parabolic systems of second order %J Bollettino della Unione matematica italiana %D 2000 %P 375-409 %V 3B %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_2_a8/ %G en %F BUMI_2000_8_3B_2_a8
Boni, Théodore K. On blow-up and asymptotic behavior of solutions for some semilinear parabolic systems of second order. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 2, pp. 375-409. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_2_a8/
[1] Dynamic theory of quasilinear parabolic systems III global existence, Math. Z., 202, 2 (1989), 219-254. | MR | Zbl
,[2] Sur l'explosion et le comportement asymptotique de la solution d'une équation parabolique semi-linéaire du second ordre, C. R. Acad. Paris, t. 326, Série I (1998), 317-322. | MR | Zbl
,[3] Global existence and blow up for a system of heat equations with a nonlinear boundary conditions, Math. Meth. in the Appl. Sci., 18 (1995), 307-315. | MR | Zbl
,[4] A semilinear parabolic system in a bounded domain, Ann. Mat. pura applicata, (IV), Vol. CLXV (1993), 315-336. | MR | Zbl
- ,[5] Critical blow up and global existence for a weakly coupled system of reaction-diffusion equations, Arch. Rational Mech. Anal., 129 (1995), 47-100. | MR | Zbl
- ,[6] Global existence and nonexistance for parabolic systems with nonlinear boundary conditions, Math. Ann., 284 (1989), 285-305. | MR | Zbl
,[7] Non-existence of global solutions to systems of semi-linear parabolic equations, Jour. of Diff. Equat., 104 (1993), 147-168. | MR | Zbl
- ,[8] Limiting behavior of a class of nonlinear reaction diffusion equations, Quaterly of Applied Mathematics, 3, Vol. XL (1982), 293-296. | MR | Zbl
,[9] Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer (1981). | MR | Zbl
,[10] Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time, Jour. of Diff. Equat., 16 (1974), 319-334. | MR | Zbl
and ,[11] Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, NJ (1967). | MR | Zbl
- ,[12] Blow-up vs. global existence for a semilinear reactiondiffusion system in a bounded domain, Commun. in PDE., 20 (11 and 12), (1995), 1991-2004. | MR | Zbl
- ,[13] Differential- und integral-ungleichungen, Springer, Berlin (1964). | MR
,