Partial discretization of topologies
Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 2, pp. 485-503.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In questo lavoro daremo una construzione che aumenta il numero di sottospazi chiusi e discreti dello spazio e daremo alcune applicazioni di tale construzione.
@article{BUMI_2000_8_3B_2_a13,
     author = {Bonanzinga, M. and Cammaroto, F. and Matveev, M. V.},
     title = {Partial discretization of topologies},
     journal = {Bollettino della Unione matematica italiana},
     pages = {485--503},
     publisher = {mathdoc},
     volume = {Ser. 8, 3B},
     number = {2},
     year = {2000},
     zbl = {0993.54001},
     mrnumber = {692509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_2_a13/}
}
TY  - JOUR
AU  - Bonanzinga, M.
AU  - Cammaroto, F.
AU  - Matveev, M. V.
TI  - Partial discretization of topologies
JO  - Bollettino della Unione matematica italiana
PY  - 2000
SP  - 485
EP  - 503
VL  - 3B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_2_a13/
LA  - en
ID  - BUMI_2000_8_3B_2_a13
ER  - 
%0 Journal Article
%A Bonanzinga, M.
%A Cammaroto, F.
%A Matveev, M. V.
%T Partial discretization of topologies
%J Bollettino della Unione matematica italiana
%D 2000
%P 485-503
%V 3B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_2_a13/
%G en
%F BUMI_2000_8_3B_2_a13
Bonanzinga, M.; Cammaroto, F.; Matveev, M. V. Partial discretization of topologies. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 2, pp. 485-503. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_2_a13/

[1] G. Balasubramanian, On some generalization of compact space, Glasnik Mat., 17 (37) (1982), 367-380. | MR | Zbl

[2] A. J. Berner, Spaces without dense conditionally compact subsspaces, Proc. Amer. Math. Soc., 81 (1979), 187-192. | MR | Zbl

[3] M. Bonanzinga, Preservation and reflection of acc and hacc spaces, Comment. Math. Univ. Carol., 37, No. 1 (1996), 147-153. | fulltext mini-dml | MR | Zbl

[4] M. Bonanzinga, On the product of a compact space with a hereditarily absolutely countably compact space, Comment. Math. Univ. Carol., 38,3 (1997), 557-562. | fulltext mini-dml | MR | Zbl

[5] M. Bonanzinga, Star-Lindelöf and absolutely star-Lindelöf spaces, Questions and Answers in Gen. Topol., 16, No. 2 (1998). | MR | Zbl

[6] M. Bonanzinga-M. V. Matveev, Centered-Lindelöfness versus star-Lindelöfness, to appear in Comment. Math. Univ. Carol. | fulltext mini-dml | MR | Zbl

[7] F. Cammaroto-G. Santoro, Some counterexamples and properties on generalizations of Lindelöf spaces, Internat. J. Math. and Math. Sci., 19 (1996), No. 4, 737-746. | MR | Zbl

[8] E. K. Van Douwen-G. M. Reed-A. W. Roscoe-I. J. Tree, Star covering properties, Topol. and Appl., 39 (1991), 71-103. | MR | Zbl

[9] Z. Frolik, Generalizations of compact and Lindelöf spaces, Czechoslovak Math. J., 9 (84) (1959), 172-217 (in Russian). | fulltext mini-dml | MR | Zbl

[10] R. Engelking, General Topology, Warszawa (1977). | MR | Zbl

[11] J. Ginsburg-A. Saks, Some applications of ultrafilters in topology, Pacific J. Math., 57 (1975), 403-418. | fulltext mini-dml | MR | Zbl

[12] V. I. Malykhin, Everywhere dense subspaces of topological spaces, General Topology, Moscow State Univ. Publ., Moscow (1986), 65-76. | MR

[13] M. V. Matveev, On everywhere dense zero dimensional subspaces of topological spaces, Vestnik MGU, (1981), No. 4, 36-39. | MR | Zbl

[14] M. V. Matveev, Inverse compactness, Topol. and Appl., 62 (1995), 181-191. | MR | Zbl

[15] M. V. Matveev, Absolutely countably compact spaces, Topol. and Appl., 58 (1994), 81-92. | MR | Zbl

[16] M. V. Matveev, A countably compact topological group which is not absolutely countably compact, Questions and Answers in Gen. Topol., 11 (1993), 173-176. | MR | Zbl

[17] M. V. Matveev, Closed embeddings into pseudocompact spaces, Mat. Zametki, 41 (1984), 377-394 (in Russian; English translation in: Math. Notes). | Zbl

[18] M. V. Matveev, Some questions on property (a), Questions and Answers in Gen. Topol., 15 (1997), 103-111. | MR | Zbl

[19] J. Van Mill-J. E. Vaughan, Is $\omega^*-\{u\}$ absolutely countably compact?, Ann. New York Akad. Sci., 767 (1995), 161-164. | MR | Zbl

[20] J. R. Porter-R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag (1988). | MR | Zbl

[21] E. A. Reznichenko, A pseudocompact space in which only sets of full cardinality are not closed and not discrete, Vestnik MGU Ser. 1 (1989), No. 6, 69-71 (in Russian; English translation in: Moscow Univ. Math. Bull). | Zbl

[22] J. Roitman, Basic $S$- and $L$-spaces, Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan Eds., Elsevier Sci. Pub. (1984), 295-326. | MR | Zbl

[23] M. E. Rudin-I. S. Stares-J. E. Vaughan, From countable compactness to absolute countable compactness, to appear in Proc. A.M.S. | MR | Zbl

[24] D. B. Shakhmatov, A pseudocompact Tychonoff space all countable subsets of which are closed and $C^*$-embedded, Topol. and Appl., 22 (1986), 139-144. | MR | Zbl

[25] R. M. Jr. Stephenson, Moore-closed and first-countable feebly compact extension spaces, Topol. and Appl., 27 (1987), 11-28. | MR | Zbl

[26] M. K. Syngal-S. P. Araya, On almost regular spaces, Glasnik Mat., 4(24) (1969), 89-99. | Zbl

[27] J. E. Vaughan, A countably compact separable space which is not absolutely countably compact, Comment. Mat. Univ. Carol., 36:1 (1995), 197-201. | fulltext mini-dml | MR | Zbl

[28] S. Willard-U. N. B. Dissanayake, The almost Lindelöf degree, Canad. Math. Bull., 27 (4) (1984), 36-41. | MR | Zbl