Reduced commutative monoids with two Archimedean components
Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 2, pp. 471-484.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Si studiano i monoidi commutativi ridotti con due componenti archimedee e si forniscono dei teoremi di strutture. Si presta particolare attenzione a quei monoidi che sono finitamente generati, e si danno degli algoritmi che permettono di ottenere informazioni a partire da un delle loro presentazioni.
@article{BUMI_2000_8_3B_2_a12,
     author = {Rosales, J. C. and Garc{\'\i}a-S\'anchez, P.~A.},
     title = {Reduced commutative monoids with two {Archimedean} components},
     journal = {Bollettino della Unione matematica italiana},
     pages = {471--484},
     publisher = {mathdoc},
     volume = {Ser. 8, 3B},
     number = {2},
     year = {2000},
     zbl = {0972.20035},
     mrnumber = {132791},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_2_a12/}
}
TY  - JOUR
AU  - Rosales, J. C.
AU  - García-Sánchez, P.~A.
TI  - Reduced commutative monoids with two Archimedean components
JO  - Bollettino della Unione matematica italiana
PY  - 2000
SP  - 471
EP  - 484
VL  - 3B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_2_a12/
LA  - en
ID  - BUMI_2000_8_3B_2_a12
ER  - 
%0 Journal Article
%A Rosales, J. C.
%A García-Sánchez, P.~A.
%T Reduced commutative monoids with two Archimedean components
%J Bollettino della Unione matematica italiana
%D 2000
%P 471-484
%V 3B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_2_a12/
%G en
%F BUMI_2000_8_3B_2_a12
Rosales, J. C.; García-Sánchez, P.~A. Reduced commutative monoids with two Archimedean components. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 2, pp. 471-484. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_2_a12/

[1] A. H. Clifford-G. B. Preston, The Algebraic Theory of Semigroups, Vol. I, Amer. Math. Soc., Providence, 1961. | MR | Zbl

[2] R. Gilmer, Commutative semigroup rings, University of Chicago Press, 1984. | MR | Zbl

[3] P. A. Grillet, The free envelope of a finitely generated commutative semigroup, Trans. Amer. Math. Soc., 149 (1970), 665-682. | MR | Zbl

[4] E. Hewitt-H. S. Zuckerman, The $l_1$-algebra of a commutative semigroup, Trans. Amer. Math. Soc., 83 (1956), 70-97. | MR | Zbl

[5] L. Rédei, The theory of finitely generated commutative semigroups, Pergamon, Oxford-Edinburgh-New York, 1965. | MR | Zbl

[6] J. C. Rosales, Function minimum associated to a congruence on integral $n$-tuple space, Semigroup Forum, 51 (1995), 87-95. | MR | Zbl

[7] J. C. Rosales-P. A. García-Sánchez, On normal affine semigroups, Linear Algebra Appl., 286 (1999), 175-186. | MR | Zbl

[8] J. C. Rosales-P. A. García-Sánchez, Finitely generated commutative monoids, Nova Science Publ., 1999. | MR | Zbl

[9] J. C. Rosales-J. M. Urbano-Blanco, A deterministic algorithm to decide if a finitely presented abelian monoid is cancellative, Comm. Algebra, 24 (13) (1996), 4217-4224. | MR | Zbl

[10] T. Tamura, Nonpotent Archimedean semigroups with cancellative law, I. J. Gakugei Tokushima Univ., 8 (1957), 5-11. | MR | Zbl