Superminimal fibres in an almost Hermitian submersion
Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 1, pp. 159-172.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Se la varietà base, $N$, di una submersione quasi-Hermitiana, $f: M \to N$, è una $G_1$-varietà e le fibre sono subvarietà superminimali, allora lo spazio totale, $M$, è $G_1$. Se la varietà base, $N$, è Hermitiana e le fibre sono subvarietà bidimensionali e superminimali, allora lo spazio totale, $M$, è Hermitiano.
@article{BUMI_2000_8_3B_1_a8,
     author = {Watson, Bill},
     title = {Superminimal fibres in an almost {Hermitian} submersion},
     journal = {Bollettino della Unione matematica italiana},
     pages = {159--172},
     publisher = {mathdoc},
     volume = {Ser. 8, 3B},
     number = {1},
     year = {2000},
     zbl = {0956.53018},
     mrnumber = {679067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a8/}
}
TY  - JOUR
AU  - Watson, Bill
TI  - Superminimal fibres in an almost Hermitian submersion
JO  - Bollettino della Unione matematica italiana
PY  - 2000
SP  - 159
EP  - 172
VL  - 3B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a8/
LA  - en
ID  - BUMI_2000_8_3B_1_a8
ER  - 
%0 Journal Article
%A Watson, Bill
%T Superminimal fibres in an almost Hermitian submersion
%J Bollettino della Unione matematica italiana
%D 2000
%P 159-172
%V 3B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a8/
%G en
%F BUMI_2000_8_3B_1_a8
Watson, Bill. Superminimal fibres in an almost Hermitian submersion. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 1, pp. 159-172. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a8/

[Bo] O. Borüvka, Sur une classe de surfaces minima plone'es dans un space á quatre dimensions a courbure constante, C. R. Acad. Sci., 187 (1928), 334-336. | Jbk 54.0795.02

[Br] R. Bryant, Conformal and minimal immersions of compact surfaces into the $4$-sphere, J. Differential Geom., 17 (1982), 455-473. | fulltext mini-dml | MR | Zbl

[Ca] E. Calabi, Minimal immersions of surfaces into Euclidean spheres, J. Differential Geom., 1 (1967), 111-125. | fulltext mini-dml | MR | Zbl

[Fa-Pa] M. Falcitelli-A. M. Pastore, A note on almost Kähler and nearly Kähler submersions, (preprint), 1998. | Zbl

[Fr1] T. Friedrich, On surfaces in four-spaces, Ann. Global Anal. & Geom., 2 (1984), 257-287. | Zbl

[Fr2] T. Friedrich, On superminimal surfaces, Arch. Math. (Brno), 33 (1997), 41-56. | fulltext mini-dml | MR | Zbl

[Gr1] A. Gray, Minimal varieties and almost Hermitian submanifolds, Michigan Math. J., 12 (1965), 273-287. | fulltext mini-dml | MR | Zbl

[Gr2] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715-738. | MR | Zbl

[Gr-He] A. Gray-L. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. CXXIII (1980), 35-58. | MR | Zbl

[Gu-Wo] S. Gudmundsson-J. C. Wood, Harmonic morphisms between almost Hermitian manifolds, Boll. Un. Mat. Ital. 11-B, Supp. 2 (1997), 185-197. | MR | Zbl

[He-Vid] L. Hervella-E. Vidal, Nouvelles géométries pseudo-Kähleriennes $G_1$ et $G_2$, C. R. Acad. Sci. Paris 283 (1976), 115-118. | MR | Zbl

[Jo] D. L. Johnson, Kähler submersions and holomorphic connections, J. Diff. Geometry 15 (1980), 71-79. | fulltext mini-dml | MR | Zbl

[Ko-No] S. Kobayashi-K. Nomizu, Foundations of Differential Geometry, Vol. II, Interscience, New York 1969. | MR | Zbl

[Kw] St. Kwietniewski, Über Flachen des vierdimensionalen Raumes, deren sämtliche Tangentialbenen untereinander gleichwinklig sind, und ihre Beziehung zu ebenen Kurven, Dissertation, Zürich, 1902. | Jbk 34.0702.01

[Mi-Mo] M. J. Micallef-J. D. Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. Math., 127 (1988), 199-227. | MR | Zbl

[O'N] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J., 13 (1966), 459-469. | fulltext mini-dml | MR | Zbl

[Wa1] B. Watson, Almost Hermitian submersions, J. Diff. Geometry, 11 (1976), 147-165. | fulltext mini-dml | MR | Zbl

[Wa2] B. Watson, The four-dimensional Goldberg Conjecture is true for almost Kähler submersions (to appear) J. of Geometry, 1999. | MR | Zbl

[Wa-Va1] B. Watson-L. Vanhecke, J-symmetries and J-linearities of the configuration tensors of an almost Hermitian submersion, Simon Stevin, 51 (1977), 139-156. | MR | Zbl

[Wa-Va2] B. Watson-L. Vanhecke, The structure equation of an almost semi-Kähler submersion, Houston Math. J., 5 (1979), 295-305. | MR | Zbl