Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2000_8_3B_1_a3, author = {Ferrario, B.}, title = {Some results on invariant measures in hydrodynamics}, journal = {Bollettino della Unione matematica italiana}, pages = {79--94}, publisher = {mathdoc}, volume = {Ser. 8, 3B}, number = {1}, year = {2000}, zbl = {0974.76022}, mrnumber = {537263}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a3/} }
Ferrario, B. Some results on invariant measures in hydrodynamics. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 1, pp. 79-94. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a3/
[1] Stationary measures for the periodic Euler flow in two dimensions, J. Stat. Phys., Vol. 20, No. 6 (1979), 585-595. | MR
- - ,[2] Equations stochastiques du type Navier-Stokes, J. Funct. Anal., 13 (1973), 195-222. | MR | Zbl
- ,[3] Karhunen-Loéve expansion of Burgers' model of turbulence, Phys. Fluids 31/9 (1988), 2573-2582.
- - - - ,[4] Stochastic Burgers equation, NoDEA, 1 (1994), 389-402. | MR | Zbl
- - ,[5] Strong Feller property for Stochastic Semilinear Equations, Stoch. Anal. and Appl. 1, Vol. 13 (1995), 35-45. | MR | Zbl
- - ,[6] Stochastic Burgers equation with correlated noise, Stochastics & Stoc. Rep., 52 (1995), 29-41. | Zbl
- ,[7] Ergodicity for Infinite Dimensional Systems, Cambridge, 1996. | MR | Zbl
- ,[8] Stochastic Equations in Infinite Dimensions, Cambridge, 1992. | MR | Zbl
- ,[9] Asymptotic properties of Markov transition probability, Trans. Am. Math. Soc., 64 (1948), 393-421. | MR | Zbl
,[10] Formulae for the Derivatives of Heat Semigroups, J. Funct. Anal., 125 (1994), 252-286. | MR | Zbl
- ,[11] Stochastic Navier-Stokes equations: analysis of the noise to have a unique invariant measure, to appear in Ann. Mat. Pura e Appl. | MR | Zbl
,[12] Pathwise regularity of non linear Ito equations. Application to a Stochastic Navier-Stokes equation., to appear in Stoc. Anal. Appl. | MR | Zbl
,[13] Invariant measures for the stochastic Navier-Stokes equations, Ph.D., Scuola Normale Superiore (1998), Pisa. | MR | Zbl
,[14] Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA, 1 (1994), 403-423. | MR | Zbl
,[15] Regularity theory and stochastic flows for parabolic SPDE's, Stochastics Monographs 9 London: Gordon and Breach, 1995. | MR | Zbl
,[16] Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Commun. Math. Phys., 171 (1995), 119-141. | fulltext mini-dml | MR | Zbl
- ,[17] Solutions in $L_{r}$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281. | MR | Zbl
- ,[18] Forced model equation for turbulence, Phys. Fluids 12/10 (1969), 2006-2010. | Zbl
,[19] On probability distributions of solutions of semilinear stochastic evolution equations, Stochastics & Stoc. Rep., 45 (1993), 17-44. | Zbl
,[20] Ergodic properties of recurrent solutions of stochastic evolution equations, Osaka J. Math., 31 (1994), 969-1003. | fulltext mini-dml | MR | Zbl
- ,[21] Statistical Fluid Mechanics, Cambridge, Mass., MIT Press, 1971.
- ,[22] Ergodic behaviour of stochastic parabolic equations, to appear in Czechoslovak Math. J. | MR | Zbl
,[23] Behaviour at time $t=0$ of the solutions of semi-linear evolution equations, J. Diff. Eq., 43 (1982), 73-92. | MR | Zbl
,[24] Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. | MR | Zbl
,[25] Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, 1983. | MR | Zbl
,