Obiettivi e metodi di ricerca in didattica della matematica
Bollettino della Unione matematica italiana, Série 8, 3A (2000) no. 2, pp. 175-199.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{BUMI_2000_8_3A_2_a2,
     author = {Schoenfeld, Alan H.},
     title = {Obiettivi e metodi di ricerca in didattica della matematica},
     journal = {Bollettino della Unione matematica italiana},
     pages = {175--199},
     publisher = {mathdoc},
     volume = {Ser. 8, 3A},
     number = {2},
     year = {2000},
     zbl = {0974.00010},
     mrnumber = {1723247},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3A_2_a2/}
}
TY  - JOUR
AU  - Schoenfeld, Alan H.
TI  - Obiettivi e metodi di ricerca in didattica della matematica
JO  - Bollettino della Unione matematica italiana
PY  - 2000
SP  - 175
EP  - 199
VL  - 3A
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3A_2_a2/
LA  - it
ID  - BUMI_2000_8_3A_2_a2
ER  - 
%0 Journal Article
%A Schoenfeld, Alan H.
%T Obiettivi e metodi di ricerca in didattica della matematica
%J Bollettino della Unione matematica italiana
%D 2000
%P 175-199
%V 3A
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3A_2_a2/
%G it
%F BUMI_2000_8_3A_2_a2
Schoenfeld, Alan H. Obiettivi e metodi di ricerca in didattica della matematica. Bollettino della Unione matematica italiana, Série 8, 3A (2000) no. 2, pp. 175-199. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3A_2_a2/

[1] M. Artigue, The Teaching and Learning of Mathematics at the University Level: Crucial Questions for Contemporary Research in Education, Notices Amer. Math. Soc., 46(1999), 1377-1385. M. Artigue, L’insegnamento e l’apprendimento dell Matematica a livello universitario (traduzione del precedente lavoro), Bollettino U.M.I., La Matematica nella Società e nella Cultura, Serie VIII, Vol. III-A, Aprile 2000, 81-103. | fulltext bdim | MR | Zbl

[2] M. Asiala - A. Brown - D. Devries - E. Dubinsky - D. Mathews - K. Thomas, A framework for research and curriculum development in undergraduate mathematics education, Research in Collegiate Mathematics Education (J. Kaput, A. Schoenfeld and E. Dubinsky, eds.), vol. II, Conference Board of the Mathematical Sciences, Washington, DC, pp. 1-32.

[3] D. P. Ausubel, Educational Psychology: A Cognitive View, Holt-Reinhardt-Winston, New York, 1968.

[4] J. S. Brown - R. R. Burton, Diagnostic models for procedural bugs in basic mathematical skills, Cognitive Science, 2(1978), 155-192.

[5] R. G. DOUGLAS (ED.), Toward a Lean and Lively Calculus, MAA Notes Number 6, Mathematical Association of America, Washington, DC, 1986.

[6] M. Lecompte - W. Millroy - J. Preissle, Handbook of Qualitative Research in Education, Academic Press, New York, 1992.

[7] G. Leinhardt, On the messiness of overlapping goals in real settings, Issues in Education, 4(1998), 125-132.

[8] G. Miller, The magic number seven, plus or minus two: some limits on our capacityfor processing information, Psychological Review, 63(1956), 81-97.

[9] A. H. Schoenfeld, Mathematical Problem Solving, Academic Press, Orlando, FL, 1985. | Zbl

[10] A. H. SCHOENFELD (ed.) Student Assessment in Calculus, MAA Notes Number 43, Mathematical Association of America, Washington, DC, 1997. | Zbl

[11] A. H. Schoenfeld, On theory and models: The case of Teaching-in-Context, Proceedings of the XX Annual Meeting of the International Group for Psychology and Mathematics Education (Sarah B. Berenson, ed.), Psychology and Mathematics Education, Raleigh, NC, 1998a.

[12] A. H. Schoenfeld, Toward a theory of teaching-in-context, Issues in Education, 4(1998b), 1-94.

[13] A. H. Schoenfeld, Models of the Teaching Process, Journal of Mathematical Behavior (in stampa).

[14] D. TALL (ed.), Advanced Mathematical Thinking, Kluwer, Dordrecht, 1991. | DOI | MR | Zbl