Algebre di Lie graduate in caratteristica due
Bollettino della Unione matematica italiana, Série 8, 3A (2000) no. 1S, pp. 105-108.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{BUMI_2000_8_3A_1S_a25,
     author = {Jurman, Giuseppe},
     title = {Algebre di {Lie} graduate in caratteristica due},
     journal = {Bollettino della Unione matematica italiana},
     pages = {105--108},
     publisher = {mathdoc},
     volume = {Ser. 8, 3A},
     number = {1S},
     year = {2000},
     zbl = {1053.17515},
     mrnumber = {79222},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3A_1S_a25/}
}
TY  - JOUR
AU  - Jurman, Giuseppe
TI  - Algebre di Lie graduate in caratteristica due
JO  - Bollettino della Unione matematica italiana
PY  - 2000
SP  - 105
EP  - 108
VL  - 3A
IS  - 1S
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3A_1S_a25/
LA  - it
ID  - BUMI_2000_8_3A_1S_a25
ER  - 
%0 Journal Article
%A Jurman, Giuseppe
%T Algebre di Lie graduate in caratteristica due
%J Bollettino della Unione matematica italiana
%D 2000
%P 105-108
%V 3A
%N 1S
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3A_1S_a25/
%G it
%F BUMI_2000_8_3A_1S_a25
Jurman, Giuseppe. Algebre di Lie graduate in caratteristica due. Bollettino della Unione matematica italiana, Série 8, 3A (2000) no. 1S, pp. 105-108. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3A_1S_a25/

[1] Albert A. A. e Frank M. S., Simple Lie algebras of characteristic p, Univ. e Politec. Torino. Rend. Sem. Mat., 14 (1954-55), 117-139. | MR | Zbl

[2] Bonmassar C. e Scoppola C. M., Normally constrained p-groups, Boll. Un. Mat. It. (1997), in corso di pubblicazione. | fulltext bdim | fulltext mini-dml | MR | Zbl

[3] Caranti A. e Jurman G., Quotients of maximal class of thin Lie algebras. The odd characteristic case. (1998), in preparazione. | DOI | MR | Zbl

[4] Caranti A. e Mattarei S. e Newman M. F., Graded Lie algebras of maximal class, Trans. Amer. Math. Soc., 349 (1997), 4021-4051. | DOI | MR | Zbl

[5] Caranti A. e Mattarei S. e Newman M. F. e Scoppola C. M., Thin groups of prime- power order and thin Lie algebras, Quart. J. Math. Oxford Ser. (2), 47 (1996), 279-296. | DOI | MR | Zbl

[6] Caranti A. e Newman M. F., Graded Lie algebras of maximal class. II (1998), in preparazione. | fulltext mini-dml | Zbl

[7] Carrara C., (Finite) presentations of loop algebras of Albert-Frank Lie algebras, Tesi di dottorato, Dipartimento di Matematica, Università di Trento (1998).

[8] Havas G., Newman M. F. e O’Brien E. A., ANU p-Quotient Program (version 1.4), written in C, available as a share library with GAP an d as part of Magma, or from http://wwwmaths.anu.edu.au/services/ftp.html (1997).

[9] Leedham-Green C. R., The structure of finite p-groups, J. London Math. Soc. (2), 50 (1994), 49-67. | DOI | MR | Zbl

[10] Leedham-Green C. R., Plesken W. e Klaas G., Pro-p-groups of finite width, Lecture Notes in Mathematics, 1674 (1997). | MR | Zbl

[11] Lucas È., Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France, 6 (1878), 49-54. | fulltext mini-dml | Jbk 10.0139.04 | MR

[12] Shalev A., The structure of finite p-groups: effective proof of the coclass conjectures, Invent. Math., 115 (1994), 315-345. | DOI | MR | Zbl

[13] Shalev A., Simple Lie algebras and Lie algebras of maximal class, Arch. Math. (Basel), 63 (1994), 297-301. | DOI | MR | Zbl