Optimal integrability of the Jacobian of orientation preserving maps
Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 3, pp. 619-628.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Dato un qualsiasi spazio invariante per riordinamenti $X(\Omega)$ su un insieme aperto $\Omega\subset \mathbb{R}^{n}$, si determina il più piccolo spazio invariante per riordinamenti $Y (\Omega)$ con la proprietà che se $u:\Omega \to \mathbb{R}^{n}$ è una applicazione che mantiene l'orientamento e $|Du|^{n} \in X(\Omega)$, allora $\det Du$ appartiene localmente a $Y(\Omega)$.
@article{BUMI_1999_8_2B_3_a6,
     author = {Cianchi, Andrea},
     title = {Optimal integrability of the {Jacobian} of orientation preserving maps},
     journal = {Bollettino della Unione matematica italiana},
     pages = {619--628},
     publisher = {mathdoc},
     volume = {Ser. 8, 2B},
     number = {3},
     year = {1999},
     zbl = {0937.46037},
     mrnumber = {989570},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_3_a6/}
}
TY  - JOUR
AU  - Cianchi, Andrea
TI  - Optimal integrability of the Jacobian of orientation preserving maps
JO  - Bollettino della Unione matematica italiana
PY  - 1999
SP  - 619
EP  - 628
VL  - 2B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_3_a6/
LA  - en
ID  - BUMI_1999_8_2B_3_a6
ER  - 
%0 Journal Article
%A Cianchi, Andrea
%T Optimal integrability of the Jacobian of orientation preserving maps
%J Bollettino della Unione matematica italiana
%D 1999
%P 619-628
%V 2B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_3_a6/
%G en
%F BUMI_1999_8_2B_3_a6
Cianchi, Andrea. Optimal integrability of the Jacobian of orientation preserving maps. Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 3, pp. 619-628. http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_3_a6/

[AM] M. A. Ariño - B. Muckenhoupt , Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc., 320 (1990), 727-735. | MR | Zbl

[BP] R. J. Bagby - J. D. Parsons , Orlicz spaces and rearranged maximal functions, Math. Nachr., 132 (1987), 15-27. | MR | Zbl

[BS] C. Bennett - R. Sharpley , Interpolation of Operators, Academic Press, Boston (1988). | MR | Zbl

[BFS] H. Brezis - N. Fusco - C. Sbordone , Integrability for the Jacobian of orientation preserving mappings, J. Funct. Anal., 115 (1993), 425-431. | MR | Zbl

[BF] P. L. Butzer - F. Fehér , Generalized Hardy and Hardy-Littlewood inequalities in rearrangement-invariant spaces, Comment. Math. Prace Mat., Tomus Specialis in Honorum Ladislai Orlicz (1978), 41-64. | MR | Zbl

[CGS] M. J. Carro - A. García Del Amo - J. Soria , Weak-type weights and normable Lorentz spaces, Proc. Amer. Math. Soc., 124 (1996), 849-857. | MR | Zbl

[C] A. Cianchi , Hardy inequalities in Orlicz spaces, Trans. Amer. Math. Soc., to appear. | MR | Zbl

[G] L. Greco , Sharp results on integrability of the Jacobian, preprint Univ. Napoli.

[GI] L. Greco - T. Iwaniec , New inequalities for the Jacobian, Ann. Inst. Poincaré, Analyse non linéaire, 11 (1994), 17-35. | fulltext mini-dml | MR | Zbl

[GIM] L. Greco - T. Iwaniec - G. Moscariello , Limits of the improved integrability of volume forms, Indiana Univ. Math. J., 44 (1995), 305-339. | MR | Zbl

[IS] T. Iwaniec - C. Sbordone , On the integrability of the Jacobian under minimal hypotheses, Arch. Rat. Mech. Anal., 119 (1992), 129-143. | MR | Zbl

[K1] H. Kita , On maximal functions in Orlicz spaces, Proc. Amer. Math. Soc., 124 (1996), 3019-3025. | MR | Zbl

[K2] H. Kita , On a converse inequality for maximal functions in Orlicz spaces, Studia Math., 118 (1996), 1-10. | fulltext mini-dml | MR | Zbl

[L] G. G. Lorentz , Relations between function spaces, Proc. Amer. Math. Soc., 12 (1961), 127-132. | MR | Zbl

[Mi] M. Milman , Inequalities for Jacobians: interpolation techniques, Rev. Colombiana Mat., 27 (1993), 67-81. | MR | Zbl

[Mo1] S. J. Montgomery-Smith , Comparison of Orlicz-Lorentz spaces, Studia Math., 103 (1992), 161-189. | fulltext mini-dml | fulltext mini-dml | MR | Zbl

[Mo2] S. J. Montgomery-Smith , Boyd indices of Orlicz-Lorentz spaces, in Function spaces (K. JAROSZ ed.), Marcel Dekker, New York (1995), 321-334. | fulltext mini-dml | MR | Zbl

[Mos] G. Moscariello , On the integrability of the Jacobian in Orlicz spaces, Math. Japonica, 40 (1992), 323-329. | MR | Zbl

[Mü] S. Müller , Higher integrability of determinants and weak convergence in $L^{1}$, J. reine angew. Math., 412 (1990), 20-34. | MR | Zbl

[S] E. T. Sawyer , Boundedness of classical operators in classical Lorentz spaces, Studia Math., 96 (1990), 145-158. | fulltext mini-dml | MR | Zbl