Localization of biholomorphisms for real hyperquadrics in $\mathbb{C}^{3}$: a computational approach
Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 3, pp. 663-672.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Si calcola esplicitamente con l'aiuto di un computer l'espressione di ogni germe di biolomorfismo in un punto di una iperquadrica reale $Q$ in $\mathbb{C}^{3}$, che porti $Q$ in $Q$. Tale germe risulta ovviamente una trasformazione lineare fratta, che lascia $Q$ invariante.
@article{BUMI_1999_8_2B_3_a10,
     author = {Dini, G. and Selvaggi Primicerio, A.},
     title = {Localization of biholomorphisms for real hyperquadrics in $\mathbb{C}^{3}$: a computational approach},
     journal = {Bollettino della Unione matematica italiana},
     pages = {663--672},
     publisher = {mathdoc},
     volume = {Ser. 8, 2B},
     number = {3},
     year = {1999},
     zbl = {0939.32031},
     mrnumber = {1098711},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_3_a10/}
}
TY  - JOUR
AU  - Dini, G.
AU  - Selvaggi Primicerio, A.
TI  - Localization of biholomorphisms for real hyperquadrics in $\mathbb{C}^{3}$: a computational approach
JO  - Bollettino della Unione matematica italiana
PY  - 1999
SP  - 663
EP  - 672
VL  - 2B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_3_a10/
LA  - en
ID  - BUMI_1999_8_2B_3_a10
ER  - 
%0 Journal Article
%A Dini, G.
%A Selvaggi Primicerio, A.
%T Localization of biholomorphisms for real hyperquadrics in $\mathbb{C}^{3}$: a computational approach
%J Bollettino della Unione matematica italiana
%D 1999
%P 663-672
%V 2B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_3_a10/
%G en
%F BUMI_1999_8_2B_3_a10
Dini, G.; Selvaggi Primicerio, A. Localization of biholomorphisms for real hyperquadrics in $\mathbb{C}^{3}$: a computational approach. Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 3, pp. 663-672. http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_3_a10/

[1] M. Abate , Iteration theory of holomorphic maps on taut manifolds. Research and Lecture, Notes in Mathematics, Mediterranean Press (1989). | MR | Zbl

[2] H. Alexander , Holomorphic mappings from the ball and polydisc., Math. Ann., 209 (1974), 249-257. | MR | Zbl

[3] D. Burns - S. Shnider , Real hypersurfaces in complex manifolds, Several complex variables, Proc. Sympos. Pure Math. Vol, 30, Amer. Math. Soc., Providence, RI (1977), 141-168. | MR | Zbl

[4] E. Cartan , Sur la geometrie pseudo-conforme des hypersurfaces de deux variables complexes. I. Ann. Mat. Pura Appl., 4 (1932), 17-90; II. Ann. Scuola Norm. Sup. Pisa, 2 (1932), 333-354. | fulltext mini-dml | Zbl

[5] S. S. Chern - J. K. Moser , Real hypersurfaces in complex manifolds, Acta Math., 133 (1974), 219-271. | MR | Zbl

[6] G. Dini - A. Selvaggi Primicerio , Localization principle of automorphisms on generalized pseudoellipsoids, to appear on J. Geom. Anal. | MR | Zbl

[7] G. Dini - A. Selvaggi Primicerio , Localization principle for a class of Reinhardt domains, Seminari di Geometria 1994-1995, Bologna (1996), 117-127. | MR | Zbl

[8] S. Pinchuk , On the analytic continuation of holomorphic mappings, Math. USSR Sb., 27 (1975), 375-392. | Zbl

[9] S. Pinchuk , On holomorphic mappings of real analytic hypersurfaces, Math. USSR Sb., 34 (1978), 503-519. | MR | Zbl

[10] H. Poincaré , Les fonctions analytiques de deux variables et la representation conforme, Rend. Circ. Mat. Palermo, 23 (1907), 185-220.

[11] N. J. Tanaka , On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables, J. Math. Soc. Japan, 14 (1962), 397-429. | fulltext mini-dml | MR | Zbl

[12] S. M. Webster , On the mapping problem for real algebraic hypersurfaces, Inv. Math., 43 (1977), 53-68. | MR | Zbl

[13] D. Zaitsev , On the automorphism group of algebraic bounded domain, Math. Ann., 302 (1995), 105-129. | MR | Zbl