$p$-minimising tangent maps and harmonic $k$-forms
Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 2, pp. 331-339.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Si studiano le applicazioni $p$-tangenti da $\mathbb{R}^{m}$ a $\mathbb{S}^{n}$ date come estensioni omogenee di $k$-forme armoniche. Vengono ricavate condizioni necessarie sul grado $k$ affinche tali applicazioni $p$-tangenti siano di energia minima. Una classificazione completa viene data nel caso in cui tali applicazioni tangenti di energia minima vadano da $\mathbb{R}^{8}$ su $\mathbb{S}^{4}$.
@article{BUMI_1999_8_2B_2_a8,
     author = {Montaldo, Stefano},
     title = {$p$-minimising tangent maps and harmonic $k$-forms},
     journal = {Bollettino della Unione matematica italiana},
     pages = {331--339},
     publisher = {mathdoc},
     volume = {Ser. 8, 2B},
     number = {2},
     year = {1999},
     zbl = {0933.58019},
     mrnumber = {716320},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a8/}
}
TY  - JOUR
AU  - Montaldo, Stefano
TI  - $p$-minimising tangent maps and harmonic $k$-forms
JO  - Bollettino della Unione matematica italiana
PY  - 1999
SP  - 331
EP  - 339
VL  - 2B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a8/
LA  - en
ID  - BUMI_1999_8_2B_2_a8
ER  - 
%0 Journal Article
%A Montaldo, Stefano
%T $p$-minimising tangent maps and harmonic $k$-forms
%J Bollettino della Unione matematica italiana
%D 1999
%P 331-339
%V 2B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a8/
%G en
%F BUMI_1999_8_2B_2_a8
Montaldo, Stefano. $p$-minimising tangent maps and harmonic $k$-forms. Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 2, pp. 331-339. http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a8/

[1] P. Baird , Harmonic Maps with Symmetry, Harmonic Morphisms, and Deformation of Metrics, Research Notes in Math., 87, Pitman, Boston, London, Melbourne (1983). | MR | Zbl

[2] P. Bairdand - Y. L. Ou , Harmonic maps and morphisms from multilinear norm-preserving mappings, Internat. J. Math., to appear. | MR | Zbl

[3] J.-M. Coronand - R. Gulliver , Minimizing $p$-harmonic maps into spheres, J. Reine Angew. Math., 401 (1989), 82-100. | MR | Zbl

[4] J. Eellsand - L. Lemaire , Another report on harmonic maps, Bull. London Math. Soc., 20 (1988), 385-524. | MR | Zbl

[5] J. Eellsand - A. Ratto , Harmonic Maps and Minimal Immersions with Symmetries, Ann. Math. Stud., 130, Princeton University Press (1993). | MR | Zbl

[6] H. Gauchmanand - G. Toth , Constructions of harmonic polynomial maps between spheres, Geom. Dedicata, 50 (1994), 57-79. | MR | Zbl

[7] R. Hardt - F.H. Lin , Mappings minimizing the $L^{p}$-norm of the gradient, Comm. Pure Appl. Math., 40 (1987), 555-588. | MR | Zbl

[8] S. Montaldo , Stability of harmonic maps and morphisms, Thesis, Leeds University (1996).

[9] N. Nakauchi , Regularity of minimizing $p$-harmonic maps into the sphere, Boll. Un. Mat. Ital., 10-A (1996), 143-156. | MR | Zbl

[10] J. F. Nash , The imbedding problem for Riemannian manifolds, Ann. Math., 63 (1956), 20-63. | MR | Zbl

[11] M. Parker , Orthogonal multiplications in small dimensions, Bull. London Math. Soc., 15 (1983), 368-372. | MR | Zbl

[12] R. Schoen - K. Uhlenbeck , A regularity theory for harmonic maps, J. Diff. Geom., 17 (1982), 307-335. | fulltext mini-dml | MR | Zbl

[13] R. Schoen - K. Uhlenbeck , Regularity of minimizing harmonic maps into the sphere, Invent. Math., 78 (1984), 89-100. | MR | Zbl

[14] R. Wood , Polynomial maps from spheres to spheres, Invent. Math., 5 (1968) 163-168. | MR | Zbl

[15] P. Yiu , Quadratic forms between spheres and the non-existence of sums of squares formulae, Math. Proc. Cambridge Philos. Soc., 100 (1986), 493-504. | MR | Zbl