Logiche modali con la proprietà del punto fisso
Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 2, pp. 279-290.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We introduce various kinds of fixed-point properties for modal logics, and we classify the most prominent systems according to these. Our goal is to do a first step towards a complete characterization of provability logics of (possibly non standard) derivability predicates for Peano Arithmetic.
@article{BUMI_1999_8_2B_2_a3,
     author = {Sacchetti, L.},
     title = {Logiche modali con la propriet\`a del punto fisso},
     journal = {Bollettino della Unione matematica italiana},
     pages = {279--290},
     publisher = {mathdoc},
     volume = {Ser. 8, 2B},
     number = {2},
     year = {1999},
     zbl = {0929.03026},
     mrnumber = {760067},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a3/}
}
TY  - JOUR
AU  - Sacchetti, L.
TI  - Logiche modali con la proprietà del punto fisso
JO  - Bollettino della Unione matematica italiana
PY  - 1999
SP  - 279
EP  - 290
VL  - 2B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a3/
LA  - it
ID  - BUMI_1999_8_2B_2_a3
ER  - 
%0 Journal Article
%A Sacchetti, L.
%T Logiche modali con la proprietà del punto fisso
%J Bollettino della Unione matematica italiana
%D 1999
%P 279-290
%V 2B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a3/
%G it
%F BUMI_1999_8_2B_2_a3
Sacchetti, L. Logiche modali con la proprietà del punto fisso. Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 2, pp. 279-290. http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a3/

[1] F. Bellissima , Atoms in modal algebras, Zeitscr. f. math. Logik un Grundlagen d.Math., Bd. 30 (1984), 303-312. | MR | Zbl

[2] C. Bernardi , The uniquennes of the fixed point theorem in every diagonalizable algebra (The algebraization of theories which express Theor. VIII), Studia Logica, 35 (1976), 335-343. | MR | Zbl

[3] C. Bernardi , The fixed point theorem for the diagonalizable algebras (The algebraization of theories which express Theor. III), Studia Logica, 34 (1975), 239-251. | MR | Zbl

[4] G. Boolos - G. Sambin , An incomplete system of modal logic, J. Philosophical Logic, 14 (1985), 351-358. | MR | Zbl

[5] S. Feferman , The Arithmetization of metamathematics in a general setting, Fund. Math., 49 (1960). | fulltext mini-dml | MR | Zbl

[6] P. R. Halmos , Algebraic Logic, Chelsea Publishing Company, New York (1962). | MR | Zbl

[7] G. E. Hughes - M. J. Cresswell , Guida alla logica modale, CLUEB, Bologna (1990).

[8] R. Magari , The diagonalizable algebras, Boll. Un. Mat. Ital. (4), 12 (1975), 321-331. | MR | Zbl

[9] R. Magari , Primi risulati sulla varietà di Boolos, Boll. Un. Mat. Ital., (6) 1-B (1982), 359-367. | MR | Zbl

[10] F. Montagna , On the diagonalizable algebra of Peano Arithmetic, Boll. Un. Mat. Ital. (5), 16-B (1979), 795-812. | MR | Zbl

[11] G. Sambin , An effective fixed point theorem in intutionistic diagonalizable algebras (The algebraization of theories which express Theor. IX), Studia Logica, 35 (1976), 345-361. | MR | Zbl

[12] C. Smorynsky , Self-Reference and Modal Logic, Springer-Verlag, New York (1985). | MR | Zbl

[13] A. Visser , Peano's Smart Children (a provability logical study of systems with built-in consistency), Logic Group, Preprint Series No. 14; Departement of Philosophy, University of Utrecht. | Zbl